1.1. ReentrantLock
可重入:单线程可以重复进入,但要重复退出。
可中断:lockInterruptibly()。
可限时:超时不能获得锁,就返回false,不会永久等待构成死锁
公平锁:先来先得
public ReentrantLock(boolean fair)
public static ReentrantLock fairLock = new ReentrantLock(true);
package com.thread.chapter05;
import java.util.concurrent.locks.ReentrantLock;
/**
* 可重入锁
* Created by chenbin on 2019\8\16 0016.
*/
public class ReenterLock implements Runnable {
public static ReentrantLock lock = new ReentrantLock();
public static int i = 0;
public void run() {
for (int j = 0;j < 10000000;j++) {
//访问共享数据 i 要加锁
lock.lock();
try{
i++;
}finally {
lock.unlock();
}
}
}
public static void main(String[] args) throws InterruptedException {
ReenterLock r1 = new ReenterLock();
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r1);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.print(i);
}
}
package com.thread.chapter05;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
/**
* 可重入锁,设置获取时间
* Created by chenbin on 2019\8\16 0016.
*/
public class TimeLock implements Runnable {
public static ReentrantLock lock = new ReentrantLock();
public void run() {
try {
if (lock.tryLock(5, TimeUnit.SECONDS)) {
Thread.sleep(6000);
} else {
System.out.print("get lock failed.");
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
if (lock.isHeldByCurrentThread()) {
lock.unlock();
}
}
}
public static void main(String[] args) throws InterruptedException {
TimeLock r1 = new TimeLock();
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r1);
t1.start();
t2.start();
t1.join();
t2.join();
}
}
1.2. Condition
概述 :类似于 Object.wait()和Object.notify();与ReentrantLock结合使用。
主要接口:
void await() throws InterruptedException;
void awaitUninterruptibly();
long awaitNanos(long nanosTimeout) throws InterruptedException;
boolean await(long time, TimeUnit unit) throws InterruptedException;
boolean awaitUntil(Date deadline) throws InterruptedException;
void signal();
void signalAll();
API详解:
await()方法会使当前线程等待,同时释放当前锁,当其他线程中使用signal()时或者signalAll()方法时,线
程会重新获得锁并继续执行。或者当线程被中断时,也能跳出等待。这和Object.wait()方法很相似。
awaitUninterruptibly()方法与await()方法基本相同,但是它并不会再等待过程中响应中断。
singal()方法用于唤醒一个在等待中的线程。相对的singalAll()方法会唤醒所有在等待中的线程。
这和Obejct.notify()方法很类似。
package com.thread.chapter05;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
/**
* 可重入锁,条件 的使用
* Created by chenbin on 2019\8\16 0016.
*/
public class ReenterConditionLock implements Runnable {
public static ReentrantLock lock = new ReentrantLock();
public static Condition condition = lock.newCondition();
public void run() {
try {
lock.lock();
condition.await();
System.out.print("Thread is going on.");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public static void main(String[] args) throws InterruptedException {
ReenterConditionLock r1 = new ReenterConditionLock();
Thread t1 = new Thread(r1);
t1.start();
Thread.sleep(2000);
lock.lock();
//通知t1继续执行
condition.signal();
lock.unlock();
}
}
1.3. Semaphore
概述:共享锁,运行多个线程同时临界区
主要接口:
public void acquire()
public void acquireUninterruptibly()
public boolean tryAcquire()
public boolean tryAcquire(long timeout, TimeUnit unit)
public void release()
package com.thread.chapter05;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
/**
* 信号量的使用
* Created by chenbin on 2019\8\16 0016.
*/
public class SemapDemo implements Runnable {
public static Semaphore semaphore = new Semaphore(5);
public void run() {
try {
semaphore.acquire();
Thread.sleep(2000);
System.out.println(Thread.currentThread().getId() +
"done.");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}
public static void main(String[] args) throws InterruptedException {
ExecutorService exec = Executors.newFixedThreadPool(20);
final SemapDemo demo = new SemapDemo();
for (int i=0;i<20;i++) {
exec.submit(demo);
}
exec.shutdown();
}
}
1.4. ReadWriteLock
概述:ReadWriteLock是JDK5中提供的读写分离锁。
访问情况:
读-读不互斥:读读之间不阻塞。
读-写互斥:读阻塞写,写也会阻塞读。
写-写互斥:写写阻塞
读 | 写 | |
读 | 非阻塞 | 阻塞 |
写 | 阻塞 | 阻塞 |
主要接口:
private static ReentrantReadWriteLock readWriteLock=new ReentrantReadWriteLock();
private static Lock readLock = readWriteLock.readLock();
private static Lock writeLock = readWriteLock.writeLock();
package com.thread.chapter05;
import java.util.Random;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* 读写锁使用场景:
* 当读操作远大于写,则读写锁可以发挥很大作用。
* 这段代码使用读写锁,程序大约两秒就可以运行完成,而使用注释中的重入锁,则需要20秒才可以运行完成。
* Created by chenbin on 2019\8\27 0027.
*/
public class ReadWriteLockDemo {
private static ReentrantLock lock = new ReentrantLock();
private static ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
private static Lock readLock = readWriteLock.readLock();
private static Lock writeLock = readWriteLock.readLock();
private int value;
//读方法
public Object handleRead(Lock lock) throws InterruptedException {
try {
lock.lock();
Thread.sleep(1000);
return value;
} finally {
lock.unlock();
}
}
//写方法
public void handleWrite(Lock lock, int index) throws InterruptedException {
try {
lock.lock();
Thread.sleep(1000);
value = index;
} finally {
lock.unlock();
}
}
//测试main()函数
public static void main(String[] args) {
final ReadWriteLockDemo exp = new ReadWriteLockDemo();
Runnable readRunnable = new Runnable() {
@Override
public void run() {
try {
exp.handleRead(readLock);
// exp.handleRead(lock);
System.out.println("readRunnable线程执行当前时间戳:" + System.currentTimeMillis());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
Runnable writeRunnable = new Runnable() {
@Override
public void run() {
try {
exp.handleWrite(writeLock, new Random().nextInt());
// exp.handleWrite(lock, new Random().nextInt());
System.out.println("writeRunnable线程执行当前时间戳:" + System.currentTimeMillis());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
//18个线程读数据
for (int i = 0; i < 18; i++) {
new Thread(readRunnable).start();
}
//2个线程写数据
for (int i = 18; i < 20; i++) {
new Thread(writeRunnable).start();
}
}
}
1.5. CountDownLatch
概述:倒数计时器
一种典型的场景就是火箭发射。在火箭发射前,为了保证万无一失,往往还要进行各项设备、仪器的检查。
只有等所有检查完毕后,引擎才能点火。这种场景就非常适合使用CountDownLatch。它可以使得点火线程
,等待所有检查线程全部完工后,再执行。
主要接口:
static final CountDownLatch end = new CountDownLatch(10);
end.countDown();
end.await();
package com.thread.chapter05;
import java.util.Random;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* 倒数计时器
* Created by chenbin on 2019\8\16 0016.
*/
public class CountDownLatchDemo implements Runnable {
public static CountDownLatch end = new CountDownLatch(10);
public void run() {
try {
//模拟检查任务
Thread.sleep(new Random().nextInt(10)*1000);
System.out.println("check done.");
end.countDown();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
}
}
public static void main(String[] args) throws InterruptedException {
ExecutorService exec = Executors.newFixedThreadPool(10);
final CountDownLatchDemo demo = new CountDownLatchDemo();
for (int i = 0;i < 10;i++) {
exec.submit(demo);
}
//等待检查
end.await();
System.out.println("Fire !");
exec.shutdown();
}
}
示意图:
1.6. CyclicBarrier
概述:Cyclic意为循环,也就是说这个计数器可以反复使用。比如,假设我们将计数器设置为10。那么凑齐第一批
10个线程后,计数器就会归零,然后接着凑齐下一批10个线程。
主要接口:
public CyclicBarrier(int parties, Runnable barrierAction)
barrierAction就是当计数器一次计数完成后,系统会执行的动作
await();
package com.thread.chapter05;
import java.util.Random;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
/**
* 循环栅栏
* Created by chenbin on 2019\8\16 0016.
*/
public class CyclicBarrierDemo {
//每个线程的任务
public static class Soldier implements Runnable {
private String soldier;
private final CyclicBarrier cyclicBarrier;
Soldier(CyclicBarrier cyclicBarrier,String soldier) {
this.cyclicBarrier = cyclicBarrier;
this.soldier = soldier;
}
public void run() {
try {
//等待栅栏位满
cyclicBarrier.await();
doWork();
//等待栅栏所有线程工作结束
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}finally {
}
}
//
private void doWork() {
try {
Thread.sleep(Math.abs(new Random().nextInt()%10000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(soldier + "任务完成");
}
}
//栅栏位满后需要执行的动作
public static class BarrierRun implements Runnable {
boolean flag;
int N;
public BarrierRun(boolean flag,int N) {
this.flag = flag;
this.N = N;
}
public void run() {
if (flag) {
System.out.println(N +"个士兵任务完成。");
} else {
System.out.println(N +"个士兵集合和完毕");
flag = true;
}
}
}
public static void main(String[] args) throws InterruptedException {
final int N = 10;
Thread[] allSoldier = new Thread[N];
boolean flag = false;
CyclicBarrier cyclic = new CyclicBarrier(N,new BarrierRun(flag,N));
//设置屏障点
System.out.println("集合队伍。");
for (int i = 0;i < N; ++i) {
System.out.println("士兵"+i+"报道。");
allSoldier[i] = new Thread(new Soldier(cyclic,"士兵"+i));
allSoldier[i].start();
// if (i == 5) {
// allSoldier[i].interrupt();
// }
}
}
}
示意图:
1.7. LockSupport
概述:提供线程阻塞原语。
主要接口:
LockSupport.park();
LockSupport.unpark(t1);
与suspend()比较:不容易引起线程冻结。
中断响应:
能够响应中断,但不抛出异常。
中断响应的结果是,park()函数的返回,可以从Thread.interrupted()得到中断标志。
package com.thread.chapter05;
import java.util.concurrent.locks.LockSupport;
/**
* Created by chenbin on 2019\8\16 0016.
*/
public class LockSupportDemo {
public static Object u = new Object();
public static class ChangeObjectThread extends Thread {
public ChangeObjectThread(String name) {
super.setName(name);
}
@Override
public void run() {
synchronized (u) {
System.out.println("in "+getName());
LockSupport.park();
}
}
}
public static void main(String[] args) throws InterruptedException {
ChangeObjectThread t1 = new ChangeObjectThread("t1");
ChangeObjectThread t2 = new ChangeObjectThread("t2");
t1.start();
Thread.sleep(1000);
t2.start();
LockSupport.unpark(t1);
LockSupport.unpark(t2);
t1.join();
t2.join();
}
}
1.8. ReentrantLock 的实现(需读源码)
CAS状态
等待队列
park()
2.1. 集合包装
HashMap:同步的Collections.synchronizedMap
public static Map m=Collections.synchronizedMap(new HashMap());
List:synchronizedList
Set:synchronizedSet
2.2. ConcurrentHashMap
高性能线程安全的HashMap
2.3. BlockingQueue
阻塞队列
2.4. ConcurrentLinkedQueue
死锁的形成通常是相互持有了对方线程正在等待的资源,导致资源的不到释放。又或者是循环死锁。
package com.thread.chapter05.deadlock;
import java.util.concurrent.locks.ReentrantLock;
/**
* 死锁案例,以及死锁检测解决(中断死锁线程)
* Created by chenbin on 2019\8\16 0016.
*/
public class DeadLockDemo implements Runnable {
public int lock;
public static ReentrantLock lock1 = new ReentrantLock();
public static ReentrantLock lock2 = new ReentrantLock();
public DeadLockDemo(int lock) {
this.lock = lock;
}
public void run() {
try {
if (lock == 1) {
lock1.lockInterruptibly();
try {
Thread.sleep(500);
} catch (InterruptedException e) {
}
lock2.lockInterruptibly();
} else {
lock2.lockInterruptibly();
try {
Thread.sleep(500);
} catch (InterruptedException e) {
}
lock1.lockInterruptibly();
}
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
if (lock1.isHeldByCurrentThread()) {
lock1.unlock();
}
if (lock2.isHeldByCurrentThread()) {
lock2.unlock();
}
System.out.print(Thread.currentThread().getId() +
":线程退出");
}
}
public static void main(String[] args) throws InterruptedException {
DeadLockDemo r1 = new DeadLockDemo(1);
DeadLockDemo r2 = new DeadLockDemo(2);
Thread t1 = new Thread(r1);
Thread t2 = new Thread(r2);
t1.start();
t2.start();
Thread.sleep(1000);
//下面代码注释后,就是死锁案例。这个方法可以检测死锁线程,并且中断进入死锁的线程。
DeadlockChecker.check();
}
}
package com.thread.chapter05.deadlock;
import java.lang.management.ManagementFactory;
import java.lang.management.ThreadInfo;
import java.lang.management.ThreadMXBean;
/**
* 死锁检测,中断死锁线程
* Created by chenbin on 2019\8\18 0018.
*/
public class DeadlockChecker {
private final static ThreadMXBean mbean = ManagementFactory.getThreadMXBean();
final static Runnable deadlockCheck = new Runnable() {
public void run() {
while (true) {
long[] deadlockThreadIds = mbean.findDeadlockedThreads();
if (deadlockThreadIds != null) {
ThreadInfo[] threadInfos = mbean.getThreadInfo(deadlockThreadIds);
for (Thread t : Thread.getAllStackTraces().keySet()) {
for (int i = 0;i < threadInfos.length;i++) {
if (t.getId() == threadInfos[i].getThreadId()) {
t.interrupt();
}
}
}
}
try {
Thread.sleep(500);
} catch (InterruptedException e) {
}
}
}
};
public static void check() {
Thread t = new Thread(deadlockCheck);
t.setDaemon(true);
t.start();
}
}
源代码可以在github上下载:https://github.com/chenbin911029/mutiThread
本文的类文件在 com.thread.chapter05 包下。
备注:本文为JAVA高并发程序设计(葛一鸣著)读书笔记,以及自身的整理和实践。