Solution -「Code+#2」「洛谷 P4033」白金元首与独舞

\(\mathcal{Description}\)

  link.
  给定一个 \(n\times m\) 的网格图,一些格子指定了走出该格的方向(上下左右),而有 \(k\) 格可以任意指定走出方向。求指定的方案数,使得从任意格子都可以走出网格图。
  \(n,m\le200;k\le300\)

\(\mathcal{Solution}\)

  令“走出边界”为走到一个特殊点,建图,其中未指定方向的点向四周连边,相当于求以特殊点为根的内向树个数,跑矩阵树定理即可。复杂度 \(\mathcal O(n^3m^3)\)
  考虑优化,生成树个数实质上只与不定向的点有关,所以直接预处理出每个不定向点向上/下/左/右走到的第一个不定向点,向其连边,再跑矩阵树。复杂度 \(\mathcal O(k^3)\)

\(\mathcal{Code}\)

#include 
#include 
#include 

const int MOD = 1e9 + 7, MAXN = 200, MAXP = 300;
int T, N, M, K[MAXP + 5][MAXP + 5], col[MAXN + 5][MAXN + 5], unk[MAXN + 5][MAXN + 5], cnt;
char gar[MAXN + 5][MAXN + 5];

inline int qkpow ( int a, int b, const int p = MOD ) {
	int ret = 1;
	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
	return ret;
}

inline int det ( const int n ) {
	int ret = 1, swp = 1;
	for ( int i = 2; i <= n; ++ i ) {
		for ( int j = i; j <= n; ++ j ) {
			if ( K[j][i] ) {
				if ( i ^ j ) std::swap ( K[i], K[j] ), swp *= -1;
				break;
			}
		}
		if ( ! ( ret = 1ll * ret * K[i][i] % MOD ) ) return 0;
		for ( int j = i + 1, inv = qkpow ( K[i][i], MOD - 2 ); j <= n; ++ j ) {
			int d = 1ll * K[j][i] * inv % MOD;
			for ( int k = i; k <= n; ++ k ) K[j][k] = ( K[j][k] - 1ll * K[i][k] * d % MOD + MOD ) % MOD;
		}
	}
	return ( ret * swp + MOD ) % MOD;
}

inline bool findLoop ( const int x, const int y, const int cur ) {
	if ( x < 1 || x > N || y < 1 || y > M || gar[x][y] == '.' ) return false;
	if ( col[x][y] == cur ) return true;
	if ( col[x][y] ) return false;
	col[x][y] = cur;
	if ( gar[x][y] == 'L' ) return findLoop ( x, y - 1, cur );
	if ( gar[x][y] == 'R' ) return findLoop ( x, y + 1, cur );
	if ( gar[x][y] == 'U' ) return findLoop ( x - 1, y, cur );
	if ( gar[x][y] == 'D' ) return findLoop ( x + 1, y, cur );
	return false;
}

inline int findUnknown ( const int x, const int y ) {
	if ( x < 1 || x > N || y < 1 || y > M ) return 1;
	if ( unk[x][y] ) return unk[x][y];
	int& ret = unk[x][y];
	if ( gar[x][y] == 'L' ) ret = findUnknown ( x, y - 1 );
	if ( gar[x][y] == 'R' ) ret = findUnknown ( x, y + 1 );
	if ( gar[x][y] == 'U' ) ret = findUnknown ( x - 1, y );
	if ( gar[x][y] == 'D' ) ret = findUnknown ( x + 1, y );
	return ret;
}

inline void add ( const int s, int t ) {
	if ( ! t ) t = 1;
	++ K[s][s], -- K[s][t];
	if ( K[s][t] < 0 ) K[s][t] += MOD;
}

int main () {
	for ( scanf ( "%d", &T ); T --; ) {
		memset ( K, 0, sizeof K );
		memset ( col, 0, sizeof col );
		memset ( unk, 0, sizeof unk );
		scanf ( "%d %d", &N, &M ), cnt = 1;
		for ( int i = 1; i <= N; ++ i ) {
			scanf ( "%s", gar[i] + 1 );
			for ( int j = 1; j <= M; ++ j ) {
				if ( gar[i][j] == '.' ) {
					unk[i][j] = ++ cnt;
				}
			}
		}
		bool loop = false;
		for ( int i = 1, cur = 1; i <= N && ! loop; ++ i ) {
			for ( int j = 1; j <= M && ! loop; ++ j ) {
				loop |= findLoop ( i, j, cur ++ );
			}
		}
		if ( loop ) { puts ( "0" ); continue; }
		for ( int i = 1; i <= N; ++ i ) {
			for ( int j = 1; j <= M; ++ j ) {
				findUnknown ( i, j );
			}
		}
		for ( int i = 1; i <= N; ++ i ) {
			for ( int j = 1; j <= M; ++ j ) {
				if ( gar[i][j] == '.' ) {
					add ( unk[i][j], unk[i][j - 1] );
					add ( unk[i][j], unk[i][j + 1] );
					add ( unk[i][j], unk[i - 1][j] );
					add ( unk[i][j], unk[i + 1][j] );
				}
			}
		}
		printf ( "%d\n", det ( cnt ) );
	}
	return 0;
}

你可能感兴趣的:(Solution -「Code+#2」「洛谷 P4033」白金元首与独舞)