OSI 物理层(设备,技术)

物理层知识概况:

OSI 物理层(设备,技术)_第1张图片

数据通信系统模型

OSI 物理层(设备,技术)_第2张图片
通信的目的是传输消息(message),如话音、文字、图像等都是消息。数据(data)是运送消息的实体。信号(signal)则是数据的电气的或电磁的表现。
一个数据通信系统可划分为三大部分,即源系统(或发送端、发送方)、传输系统(或传输网络)和目的系统(或接收端、接收方)。在源系统和目的系统之间的传输系统可能是简单的传输线,也可以是连接在源系统和目的系统之间复杂网络系统。

名词解释:

  • 源点:源点设备产生要传输的数据,例如,从PC机的键盘输入汉字,PC机产生输出的数字比特流。源点又称为源站,或信源。
  • 发送器:通常源点产生的数字比特流要通过发送器编码后才能够在传输系统中进行传输。典型的发送器就是调制器。现在好多PC机使用内置的调制解调器(包括调制器和解调器),用户在PC机外面看不见调制解调器。
  • 接收器:接收传输系统传送过来的信号,并把它转换为能够被目的设备处理的信息。典型的接收器就是解调器,它把来自传输线路上的模拟信号进行解调,提取出在发送端置入的消息,还原出发送端产生的数字比特流。
  • 终点(destination):终点设备从接收器获取传送来的数字比特流,然后把信息输出(例如,把汉字在PC机屏幕上显示出来)。终点又称为目的站,或信宿。

信号分类:

  • (1)模拟信号,或连续信号:代表消息的参数的取值是连续的。
  • (2)数字信号,或离散信号:代表消息的参数的取值是离散的,在使用时间域(或简称为时域)的波形表示数字信号时,则代表不同离散数值的基本波形就称为码元。在使用二进制编码时,只有两种不同的码元,一种代表0状态,另一种代表1状态。

信道的几个基本概念

  • 单向通信(单工通信):只能有一个方向的通信而没有反方向的交互。
  • 双向交替通信(半双工通信):通信的双方都可以发送信息,但不能双方同时发送(当然也就不能同时接收)。
  • 双向同时通信(全双工通信):通信的双方可以同时发送和接收信息。
  • 基带信号(即基本频带信号):来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。 基带信号往往包含有较多的低频成分,甚至有直流成分,而许多信道并不能传输这种低频分量或直流分量。因此必须对基带信号进行调制(modulation)。这个调制称为基带调制,这种调制是把数字信号转换为另一种形式的数字信号,因此这个过程也叫做编码。
  • 带通信号:把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。这个调制称为带通调制。

几种常用编码方式(数字信号):

  • 不归零制 :正电平代表1,负电平代表0。
  • 归零制 :正脉冲代表1,负脉冲代表0。
  • 曼彻斯特编码 :位周期中心的向上跳变代表0,位周期中心的向下跳变代表1。但也可反过来定义。
  • 差分曼彻斯特编码 :在每一位的中心处始终都有跳变。位开始边界有跳变代表0,而位开始边界有没有跳变代表1。

物理层下面的传输媒体

导引型传输媒体

OSI 物理层(设备,技术)_第3张图片
双绞线:双绞线由两根彼此绝缘的铜线组成,这两根线按照规则的螺线状绞合在一起。每一对线作为一根通信链路使用。通常,将许多这样的线对捆扎在一起,并用坚硬的、起保护作用的护皮包裹成一根电缆。将线对绞合起来是为了减轻同一根电缆内的相邻线对之间的串扰,且相邻线对通常具有不同的绞合长度。

  • 屏蔽双绞线 STP (Shielded Twisted Pair)
  • 无屏蔽双绞线 UTP (Unshielded Twisted Pair)

同轴电缆:同轴电缆由同轴的两个导体构成,外导体是一个圆柱形的空管(在可弯曲的同轴电缆中,它可以由金属丝编织而成),内导体是金属线(芯线)。它们之间填充着绝缘介质,可能是塑料,也可能是空气。在采用空气绝缘的情况下,内导体依靠有一定间距的绝缘子来定位。

  • 50欧同轴电缆
  • 75欧同轴电缆

光缆(光导纤维)光纤是一种纤细(2~125μm)柔韧能够传导光线的介质。有多种玻璃和塑料可用于制造光纤,使用超高纯二氧化硅熔丝的光纤可得到最低损耗。光纤的外形是圆柱体,由三个同轴部分组成:芯、覆层以及防护罩。光纤具有损耗低、频带宽、线径细、重量轻、可弯曲半径小、不怕腐蚀、节省有色金属以及不受电磁波干扰等优点。

非导引型传输媒体

短波通信,微波通信,卫星通信等。
OSI 物理层(设备,技术)_第4张图片

信道复用技术

频分复用,时分复用,波分复用,码分复用
更多了解请点击《信道复用技术》

宽带接入技术

1.铜线接入技术:ADSL(非对称数字用户线),VDSL(超高速数字用户线)。
2. HFC(Hybrid Fiber Coaxial,混合光纤同轴网)技术
3. 光接入技术
4. 无线接入技术

物理层设备

一、中继器

   中继器(Repeater)工作于OSI的第一层(物理层),中继器是最简单的网络互联设备,连接同一个网络的两个或多个网段,主要完成物理层的功能,负责在两个网络节点的物理层上按位传递信息,完成信号的复制、调整和放大功能,以此从而增加信号传输的距离,延长网络的长度和覆盖区域,支持远距离的通信。一般来说,中继器两端的网络部分是网段,而不是子网。中继器只将任何电缆段上的数据发送到另一段电缆上,并不管数据中是否有错误数据或不适于网段的数据。大家最常接触的是网络中继器,在通讯上还有微波中继器、激光中继器、红外中继器等等,机理类似,触类旁通。

二、集线器

   集线器也称HUB,工作在OSI七层结构的第一层物理层,属于共享型设备,接收数据广播发出,在局域网内一般都是星型连接拓扑结构,所有的工作站都连接到集线器上。由于集线器的带宽共享特性导致网络利用效率极低,一般在大中型的网络中不会使用到集线器。现在的集线器基本都是全双工模式,市面上常见的集线器传输速率普遍都为100Mbps。 集线器就是将网线集中到一起的机器,也就是多台主机和设备的连接器。集线器的主要功能是对接收到的信号进行同步整形放大,以扩大网络的传输距离,是中继器的一种形式,区别在于集线器能够提供多端口服务,也称为多口中继器。集线器在OSI/RM中的物理层。集线器的基本功能是信息分发,它把一个端口接收的所有信号向所有端口分发出去。一些集线器在分发之前将弱信号重新生成,一些集线器整理信号的时序以提供所有端口间的同步数据通信。
  集线器实际就是一种多端口的中继器。集线器一般有4、8、16、24、32等数量的RJ45接口,通过这些接口,集线器便能为相应数量的电脑完成“中继”功能(将已经衰减得不完整的信号经过整理,重新产生出完整的信号再继续传送)。由于它在网络中处于一种“中心”位置,因此集线器也叫做“HUB”。
  集线器的工作原理很简单,比如有一个具备8个端口的集线器,共连接了8台电脑。集线器处于网络的“中心”,通过集线器对信号进行转发,8台电脑之间可以互连互通。具体通信过程是这样的:假如计算机1要将一条信息发送给计算机8,当计算机1的网卡将信息通过双绞线送到集线器上时,集线器并不会直接将信息送给计算机8,它会将信息进行“广播”——将信息同时发送给8个端口,当8个端口上的计算机接收到这条广播信息时,会对信息进行检查,如果发现该信息是发给自己的,则接收,否则不予理睬。由于该信息是计算机1发给计算机8的,因此最终计算机8会接收该信息,而其它7台电脑看完信息后,会因为信息不是自己的而不接收该信息。

三、 RJ-45接口 和5类线(网线),RJ-11插口(电话线)

你可能感兴趣的:(【计算机网络】,网络技术)