在工业控制中,工控机(一般都基于Windows平台)经常需要与智能仪表通过串口进行通信。串口通信方便易行,应用广泛。一般情况下,工控机和各智能仪表通过RS485总线进行通信。RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点。每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答。
HANDLE CreateFile( LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile);
lpFileName: 将要打开的串口逻辑名,如“COM1”;dwFlagsAndAttributes: 属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O; 该值为0,表示同步I/O操作;
hTemplateFile: 对串口而言该参数必须置为NULL; HANDLE hCom; //全局变量,串口句柄
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允许读和写
0, //独占方式
NULL,
OPEN_EXISTING, //打开而不是创建
0, //同步方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打开COM失败!");
return FALSE;
}
return TRUE;
HANDLE hCom; //全局变量,串口句柄
hCom =CreateFile("COM1", //COM1口
GENERIC_READ|GENERIC_WRITE, //允许读和写
0, //独占方式
NULL,
OPEN_EXISTING, //打开而不是创建
FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
NULL);
if(hCom ==INVALID_HANDLE_VALUE)
{
AfxMessageBox("打开COM失败!");
return FALSE;
}
return TRUE;
typedef struct _DCB{
………
//波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:
//CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400,
//CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
DWORD BaudRate;
DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查
…
BYTE ByteSize; // 通信字节位数,4—8
BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:
EVENPARITY 偶校验 NOPARITY 无校验
MARKPARITY 标记校验 ODDPARITY 奇校验
BYTE StopBits; //指定停止位的位数。此成员可以有下列值:
//ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位
//ONE5STOPBITS 1.5位停止位
………
} DCB;
typedef struct _DCB{
………
//波特率,指定通信设备的传输速率。这个成员可以是实际波特率值或者下面的常量值之一:
//CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400,
//CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
DWORD BaudRate;
DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查
…
BYTE ByteSize; // 通信字节位数,4—8
BYTE Parity; //指定奇偶校验方法。此成员可以有下列值:
EVENPARITY 偶校验 NOPARITY 无校验
MARKPARITY 标记校验 ODDPARITY 奇校验
BYTE StopBits; //指定停止位的位数。此成员可以有下列值:
//ONESTOPBIT 1位停止位 TWOSTOPBITS 2位停止位
//ONE5STOPBITS 1.5位停止位
………
} DCB;
#define NOPARITY 0
#define ODDPARITY 1
#define EVENPARITY 2
#define ONESTOPBIT 0
#define ONE5STOPBITS 1
#define TWOSTOPBITS 2
#define CBR_110 110
#define CBR_300 300
#define CBR_600 600
#define CBR_1200 1200
#define CBR_2400 2400
#define CBR_4800 4800
#define CBR_9600 9600
#define CBR_14400 14400
#define CBR_19200 19200
#define CBR_38400 38400
#define CBR_56000 56000
#define CBR_57600 57600
#define CBR_115200 115200
#define CBR_128000 128000
#define CBR_256000 256000
BOOL GetCommState(
HANDLE hFile, //标识通讯端口的句柄
LPDCB lpDCB //指向一个设备控制块(DCB结构)的指针
);
BOOL SetCommState(
HANDLE hFile,
LPDCB lpDCB
);
除了在BCD中的设置外,程序一般还需要设置I/O缓冲区的大小和超时。Windows用I/O缓冲区来暂存串口输入和输出的数据。如果通信的速率较高,则应该设置较大的缓冲区。调用SetupComm函数可以设置串行口的输入和输出缓冲区的大小。
BOOL SetupComm(
HANDLE hFile, // 通信设备的句柄
DWORD dwInQueue, // 输入缓冲区的大小(字节数)
DWORD dwOutQueue // 输出缓冲区的大小(字节数)
);
typedef struct _COMMTIMEOUTS {
DWORD ReadIntervalTimeout; //读间隔超时
DWORD ReadTotalTimeoutMultiplier; //读时间系数
DWORD ReadTotalTimeoutConstant; //读时间常量
DWORD WriteTotalTimeoutMultiplier; // 写时间系数
DWORD WriteTotalTimeoutConstant; //写时间常量
} COMMTIMEOUTS,*LPCOMMTIMEOUTS;
如果所有写超时参数均为0,那么就不使用写超时。如果ReadIntervalTimeout为0,那么就不使用读间隔超时。如果ReadTotalTimeoutMultiplier 和 ReadTotalTimeoutConstant 都为0,则不使用读总超时。如果读间隔超时被设置成MAXDWORD并且读时间系数和读时间常量都为0,那么在读一次输入缓冲区的内容后读操作就立即返回,而不管是否读入了要求的字符。
在用重叠方式读写串口时,虽然ReadFile和WriteFile在完成操作以前就可能返回,但超时仍然是起作用的。在这种情况下,超时规定的是操作的完成时间,而不是ReadFile和WriteFile的返回时间。
配置串口的示例代码:
SetupComm(hCom,1024,1024); //输入缓冲区和输出缓冲区的大小都是1024
COMMTIMEOUTS TimeOuts;
//设定读超时
TimeOuts.ReadIntervalTimeout=1000;
TimeOuts.ReadTotalTimeoutMultiplier=500;
TimeOuts.ReadTotalTimeoutConstant=5000;
//设定写超时
TimeOuts.WriteTotalTimeoutMultiplier=500;
TimeOuts.WriteTotalTimeoutConstant=2000;
SetCommTimeouts(hCom,&TimeOuts); //设置超时
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率为9600
dcb.ByteSize=8; //每个字节有8位
dcb.Parity=NOPARITY; //无奇偶校验位
dcb.StopBits=TWOSTOPBITS; //两个停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
在读写串口之前,还要用PurgeComm()函数清空缓冲区,该函数原型:
BOOL PurgeComm(
HANDLE hFile, //串口句柄
DWORD dwFlags // 需要完成的操作
);
参数dwFlags指定要完成的操作,可以是下列值的组合:
BOOL ReadFile(
HANDLE hFile, //串口的句柄
// 读入的数据存储的地址,
// 即读入的数据将存储在以该指针的值为首地址的一片内存区
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead, // 要读入的数据的字节数
// 指向一个DWORD数值,该数值返回读操作实际读入的字节数
LPDWORD lpNumberOfBytesRead,
// 重叠操作时,该参数指向一个OVERLAPPED结构,同步操作时,该参数为NULL。
LPOVERLAPPED lpOverlapped
);
BOOL WriteFile(
HANDLE hFile, //串口的句柄
// 写入的数据存储的地址,
// 即以该指针的值为首地址的nNumberOfBytesToWrite
// 个字节的数据将要写入串口的发送数据缓冲区。
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite, //要写入的数据的字节数
// 指向指向一个DWORD数值,该数值返回实际写入的字节数
LPDWORD lpNumberOfBytesWritten,
// 重叠操作时,该参数指向一个OVERLAPPED结构,
// 同步操作时,该参数为NULL。
LPOVERLAPPED lpOverlapped
);
在用ReadFile和WriteFile读写串口时,既可以同步执行,也可以重叠执行。在同步执行时,函数直到操作完成后才返回。这意味着同步执行时线程会被阻塞,从而导致效率下降。在重叠执行时,即使操作还未完成,这两个函数也会立即返回,费时的I/O操作在后台进行。
char str[100];
DWORD wCount;//读取的字节数
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,100,&wCount,NULL);
if(!bReadStat)
{
AfxMessageBox("读串口失败!");
return FALSE;
}
return TRUE;
//同步写串口
char lpOutBuffer[100];
DWORD dwBytesWrite=100;
COMSTAT ComStat;
DWORD dwErrorFlags;
BOOL bWriteStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
if(!bWriteStat)
{
AfxMessageBox("写串口失败!");
}
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
BOOL GetOverlappedResult(
HANDLE hFile, // 串口的句柄
// 指向重叠操作开始时指定的OVERLAPPED结构
LPOVERLAPPED lpOverlapped,
// 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。
LPDWORD lpNumberOfBytesTransferred,
// 该参数用于指定函数是否一直等到重叠操作结束。
// 如果该参数为TRUE,函数直到操作结束才返回。
// 如果该参数为FALSE,函数直接返回,这时如果操作没有完成,
// 通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。
BOOL bWait
);
该函数返回重叠操作的结果,用来判断异步操作是否完成,它是通过判断OVERLAPPED结构中的hEvent是否被置位来实现的。
char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);
ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer, dwBytesRead,&dwBytesRead,&m_osRead);
if(!bReadStatus) //如果ReadFile函数返回FALSE
{
if(GetLastError()==ERROR_IO_PENDING)
//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
{
WaitForSingleObject(m_osRead.hEvent,2000);
//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
PurgeComm(hCom, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
}
return 0;
}
PurgeComm(hCom, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
对以上代码再作简要说明:在使用ReadFile 函数进行读操作前,应先使用ClearCommError函数清除错误。ClearCommError函数的原型如下:
char lpInBuffer[1024];
DWORD dwBytesRead=1024;
COMSTAT ComStat;
DWORD dwErrorFlags;
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);
ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
if(!dwBytesRead)
return FALSE;
BOOL bReadStatus;
bReadStatus=ReadFile(hCom,lpInBuffer, dwBytesRead,&dwBytesRead,&m_osRead);
if(!bReadStatus) //如果ReadFile函数返回FALSE
{
if(GetLastError()==ERROR_IO_PENDING)
//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
{
WaitForSingleObject(m_osRead.hEvent,2000);
//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
PurgeComm(hCom, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
}
return 0;
}
PurgeComm(hCom, PURGE_TXABORT|PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
return dwBytesRead;
LPDWORD lpErrors, // 指向接收错误码的变量
LPCOMSTAT lpStat // 指向通讯状态缓冲区
);
该函数获得通信错误并报告串口的当前状态,同时,该函数清除串口的错误标志以便继续输入、输出操作。
typedef struct _COMSTAT { // cst
DWORD fCtsHold : 1; // Tx waiting for CTS signal
DWORD fDsrHold : 1; // Tx waiting for DSR signal
DWORD fRlsdHold : 1; // Tx waiting for RLSD signal
DWORD fXoffHold : 1; // Tx waiting, XOFF char rec''d
DWORD fXoffSent : 1; // Tx waiting, XOFF char sent
DWORD fEof : 1; // EOF character sent
DWORD fTxim : 1; // character waiting for Tx
DWORD fReserved : 25; // reserved
DWORD cbInQue; // bytes in input buffer
DWORD cbOutQue; // bytes in output buffer
} COMSTAT, *LPCOMSTAT;
本文只用到了cbInQue成员变量,该成员变量的值代表输入缓冲区的字节数。
char lpInBuffer[1024];
DWORD dwBytesRead=1024;
BOOL bReadStatus;
DWORD dwErrorFlags;
COMSTAT ComStat;
OVERLAPPED m_osRead;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
if(!ComStat.cbInQue)
return 0;
dwBytesRead=min(dwBytesRead,(DWORD)ComStat.cbInQue);
bReadStatus=ReadFile(hCom, lpInBuffer,dwBytesRead,&dwBytesRead,&m_osRead);
if(!bReadStatus) //如果ReadFile函数返回FALSE
{
if(GetLastError()==ERROR_IO_PENDING)
{
GetOverlappedResult(hCom,
&m_osRead,&dwBytesRead,TRUE);
// GetOverlappedResult函数的最后一个参数设为TRUE,
//函数会一直等待,直到读操作完成或由于错误而返回。
return dwBytesRead;
}
return 0;
}
return dwBytesRead;
异步写串口的示例代码:
char buffer[1024];
DWORD dwBytesWritten=1024;
DWORD dwErrorFlags;
COMSTAT ComStat;
OVERLAPPED m_osWrite;
BOOL bWriteStat;
bWriteStat=WriteFile(hCom,buffer,dwBytesWritten, &dwBytesWritten,&m_OsWrite);
if(!bWriteStat)
{
if(GetLastError()==ERROR_IO_PENDING)
{
WaitForSingleObject(m_osWrite.hEvent,1000);
return dwBytesWritten;
}
return 0;
}
return dwBytesWritten;
4.关闭串口
BOOL CloseHandle(
HANDLE hObject; //handle to object to close
);
串口编程的一个实例
// TODO: Add extra initialization here
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允许读和写
0, //独占方式
NULL,
OPEN_EXISTING, //打开而不是创建
0, //同步方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打开COM失败!");
return FALSE;
}
SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是1024
COMMTIMEOUTS TimeOuts;
//设定读超时
TimeOuts.ReadIntervalTimeout=MAXDWORD;
TimeOuts.ReadTotalTimeoutMultiplier=0;
TimeOuts.ReadTotalTimeoutConstant=0;
//在读一次输入缓冲区的内容后读操作就立即返回,
//而不管是否读入了要求的字符。
//设定写超时
TimeOuts.WriteTotalTimeoutMultiplier=100;
TimeOuts.WriteTotalTimeoutConstant=500;
SetCommTimeouts(hCom,&TimeOuts); //设置超时
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率为9600
dcb.ByteSize=8; //每个字节有8位
dcb.Parity=NOPARITY; //无奇偶校验位
dcb.StopBits=TWOSTOPBITS; //两个停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
//分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:
void CRS485CommDlg::OnSend()
{
// TODO: Add your control notification handler code here
// 在此需要简单介绍百特公司XMA5000的通讯协议:
//该仪表RS485通讯采用主机广播方式通讯。
//串行半双工,帧11位,1个起始位(0),8个数据位,2个停止位(1)
//如:读仪表显示的瞬时值,主机发送:DC1 AAA BB ETX
//其中:DC1是标准ASCII码的一个控制符号,码值为11H(十进制的17)
//在XMA5000的通讯协议中,DC1表示读瞬时值
//AAA是从机地址码,也就是XMA5000显示仪表的通讯地址
//BB为通道号,读瞬时值时该值为01
//ETX也是标准ASCII码的一个控制符号,码值为03H
//在XMA5000的通讯协议中,ETX表示主机结束符
char lpOutBuffer[7];
memset(lpOutBuffer,''\0'',7); //前7个字节先清零
lpOutBuffer[0]=''\x11''; //发送缓冲区的第1个字节为DC1
lpOutBuffer[1]=''0''; //第2个字节为字符0(30H)
lpOutBuffer[2]=''0''; //第3个字节为字符0(30H)
lpOutBuffer[3]=''1''; // 第4个字节为字符1(31H)
lpOutBuffer[4]=''0''; //第5个字节为字符0(30H)
lpOutBuffer[5]=''1''; //第6个字节为字符1(31H)
lpOutBuffer[6]=''\x03''; //第7个字节为字符ETX
//从该段代码可以看出,仪表的通讯地址为001
DWORD dwBytesWrite=7;
COMSTAT ComStat;
DWORD dwErrorFlags;
BOOL bWriteStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
bWriteStat=WriteFile(hCom,lpOutBuffer,dwBytesWrite,& dwBytesWrite,NULL);
if(!bWriteStat)
{
AfxMessageBox("写串口失败!");
}
}
void CRS485CommDlg::OnReceive()
{
// TODO: Add your control notification handler code here
char str[100];
memset(str,''\0'',100);
DWORD wCount=100;//读取的字节数
BOOL bReadStat;
bReadStat=ReadFile(hCom,str,wCount,&wCount,NULL);
if(!bReadStat)
AfxMessageBox("读串口失败!");
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
m_disp=str;
UpdateData(FALSE);
}
您可以观察返回的字符串,其中有和仪表显示值相同的部分,您可以进行相应的字符串操作取出仪表的显示值。
void CRS485CommDlg::OnClose()
{
// TODO: Add your message handler code here and/or call default
CloseHandle(hCom); //程序退出时关闭串口
CDialog::OnClose();
}
程序的相应部分已经在代码内部作了详细介绍。连接好硬件部分,编译运行程序,细心体会串口同步操作部分。
hCom=CreateFile("COM1",//COM1口
GENERIC_READ|GENERIC_WRITE, //允许读和写
0, //独占方式
NULL,
OPEN_EXISTING, //打开而不是创建
FILE_ATTRIBUTE_NORMAL|FILE_FLAG_OVERLAPPED, //重叠方式
NULL);
if(hCom==(HANDLE)-1)
{
AfxMessageBox("打开COM失败!");
return FALSE;
}
SetupComm(hCom,100,100); //输入缓冲区和输出缓冲区的大小都是100
COMMTIMEOUTS TimeOuts;
//设定读超时
TimeOuts.ReadIntervalTimeout=MAXDWORD;
TimeOuts.ReadTotalTimeoutMultiplier=0;
TimeOuts.ReadTotalTimeoutConstant=0;
//在读一次输入缓冲区的内容后读操作就立即返回,
//而不管是否读入了要求的字符。
//设定写超时
TimeOuts.WriteTotalTimeoutMultiplier=100;
TimeOuts.WriteTotalTimeoutConstant=500;
SetCommTimeouts(hCom,&TimeOuts); //设置超时
DCB dcb;
GetCommState(hCom,&dcb);
dcb.BaudRate=9600; //波特率为9600
dcb.ByteSize=8; //每个字节有8位
dcb.Parity=NOPARITY; //无奇偶校验位
dcb.StopBits=TWOSTOPBITS; //两个停止位
SetCommState(hCom,&dcb);
PurgeComm(hCom,PURGE_TXCLEAR|PURGE_RXCLEAR);
//分别双击IDC_SEND按钮和IDC_RECEIVE按钮,添加两个按钮的响应函数:
void CRS485CommDlg::OnSend()
{
// TODO: Add your control notification handler code here
OVERLAPPED m_osWrite;
memset(&m_osWrite,0,sizeof(OVERLAPPED));
m_osWrite.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);
char lpOutBuffer[7];
memset(lpOutBuffer,''\0'',7);
lpOutBuffer[0]=''\x11'';
lpOutBuffer[1]=''0'';
lpOutBuffer[2]=''0'';
lpOutBuffer[3]=''1'';
lpOutBuffer[4]=''0'';
lpOutBuffer[5]=''1'';
lpOutBuffer[6]=''\x03'';
DWORD dwBytesWrite=7;
COMSTAT ComStat;
DWORD dwErrorFlags;
BOOL bWriteStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
bWriteStat=WriteFile(hCom,lpOutBuffer,
dwBytesWrite,& dwBytesWrite,&m_osWrite);
if(!bWriteStat)
{
if(GetLastError()==ERROR_IO_PENDING)
{
WaitForSingleObject(m_osWrite.hEvent,1000);
}
}
}
void CRS485CommDlg::OnReceive()
{
// TODO: Add your control notification handler code here
OVERLAPPED m_osRead;
memset(&m_osRead,0,sizeof(OVERLAPPED));
m_osRead.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);
COMSTAT ComStat;
DWORD dwErrorFlags;
char str[100];
memset(str,''\0'',100);
DWORD dwBytesRead=100;//读取的字节数
BOOL bReadStat;
ClearCommError(hCom,&dwErrorFlags,&ComStat);
dwBytesRead=min(dwBytesRead, (DWORD)ComStat.cbInQue);
bReadStat=ReadFile(hCom,str,
dwBytesRead,&dwBytesRead,&m_osRead);
if(!bReadStat)
{
if(GetLastError()==ERROR_IO_PENDING)
//GetLastError()函数返回ERROR_IO_PENDING,表明串口正在进行读操作
{
WaitForSingleObject(m_osRead.hEvent,2000);
//使用WaitForSingleObject函数等待,直到读操作完成或延时已达到2秒钟
//当串口读操作进行完毕后,m_osRead的hEvent事件会变为有信号
}
}
PurgeComm(hCom, PURGE_TXABORT|
PURGE_RXABORT|PURGE_TXCLEAR|PURGE_RXCLEAR);
m_disp=str;
UpdateData(FALSE);
}
//打开ClassWizard,为静态文本框IDC_DISP添加CString类型变量m_disp,同时添加WM_CLOSE的相应函数:
void CRS485CommDlg::OnClose()
{
// TODO: Add your message handler code here and/or call default
CloseHandle(hCom); //程序退出时关闭串口
CDialog::OnClose();
}
您可以仔细对照这两个例程,细心体会串口同步操作和异步操作的区别。 好了,就到这吧,祝您好运。
CBR_110,CBR_300,CBR_600,CBR_1200,CBR_2400,CBR_4800,CBR_9600,CBR_19200, CBR_38400,
CBR_56000, CBR_57600, CBR_115200, CBR_128000, CBR_256000, CBR_14400
DWORD fParity; // 指定奇偶校验使能。若此成员为1,允许奇偶校验检查