2、代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Bi-cubic interpolation
def bc_interpolate(img, ax=1., ay=1.):
H, W, C = img.shape
aH = int(ay * H)
aW = int(ax * W)
# get position of resized image
y = np.arange(aH).repeat(aW).reshape(aW, -1)
x = np.tile(np.arange(aW), (aH, 1))
# get position of original position
y = y / ay
x = x / ax
ix = np.floor(x).astype(np.int)
iy = np.floor(y).astype(np.int)
ix = np.minimum(ix, W - 2)
iy = np.minimum(iy, H - 2)
# get distance
dx2 = x - ix
dy2 = y - iy
dx1 = dx2 + 1
dy1 = dy2 + 1
dx3 = 1 - dx2
dy3 = 1 - dy2
dx4 = 1 + dx3
dy4 = 1 + dy3
dxs = [dx1, dx2, dx3, dx4]
dys = [dy1, dy2, dy3, dy4]
# bi-cubic weight
def weight(t):
a = -1.
at = np.abs(t)
w = np.zeros_like(t)
ind = np.where(at <= 1)
w[ind] = ((a + 2) * np.power(at, 3) - (a + 3) * np.power(at, 2) + 1)[ind]
ind = np.where((at > 1) & (at <= 2))
w[ind] = (a * np.power(at, 3) - 5 * a * np.power(at, 2) + 8 * a * at - 4 * a)[ind]
return w
w_sum = np.zeros((aH, aW, C), dtype=np.float32)
out = np.zeros((aH, aW, C), dtype=np.float32)
# interpolate
for j in range(-1, 3):
for i in range(-1, 3):
ind_x = np.minimum(np.maximum(ix + i, 0), W - 1)
ind_y = np.minimum(np.maximum(iy + j, 0), H - 1)
wx = weight(dxs[i + 1])
wy = weight(dys[j + 1])
wx = np.repeat(np.expand_dims(wx, axis=-1), 3, axis=-1)
wy = np.repeat(np.expand_dims(wy, axis=-1), 3, axis=-1)
w_sum += wx * wy
out += wx * wy * img[ind_y, ind_x]
out /= w_sum
out = np.clip(out, 0, 255)
out = out.astype(np.uint8)
return out
img = cv2.imread('lena.jpg').astype(np.float)
out = bc_interpolate(img, 1.5, 1.5)
cv2.imshow('result', out)
cv2.waitKey(0)
cv2.destroyAllWindows()
3、反思
后续补上。。。