1、wav音频文件的格式
wav文件由文件头和采样数据2部分组成。
文件头又分为RIFF(Resource Interchange File Format)、WAVE文件标识段 和 声音数据格式说明段组成。
各段的起始地址分别由RIFF标识符、WAVE标识符、以及波形格式标识符(FMT)标定。
(1)文件头格式
注意:下面的地址是连续的
(2)数据格式
虽然上图给出的数据标识符起始地址刚好是文件头的末地址+1,但并不代表总是这样。
因此,我们在读取数据时最好是找到数据标识符,该标识符的4个字节刚好是'd'、‘a’、‘t’、‘a’。
2、C语言读取wav文件
首先对一些类型使用了重定义
typedef unsigned char uchar;
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned long uint32;
typedef char sint8;
typedef short sint16;
typedef long sint32;
typedef float fp32;
typedef double fp64;
typedef enum BOOLEAN
{
TRUE = 1,
FALSE = 0
} boolean;
(1)wav结构体定义
//wave文件头
typedef struct WaveHeader
{
uint8 riff[4]; //资源交换文件标志
uint32 size; //从下个地址开始到文件结尾的字节数
uint8 wave_flag[4]; //wave文件标识
uint8 fmt[4]; //波形格式标识
uint32 fmt_len; //过滤字节(一般为00000010H)
uint16 tag; //格式种类,值为1时,表示PCM线性编码
uint16 channels; //通道数,单声道为1,双声道为2
uint32 samp_freq; //采样频率
uint32 byte_rate; //数据传输率 (每秒字节=采样频率×每个样本字节数)
uint16 block_align; //块对齐字节数 = channles * bit_samp / 8
uint16 bit_samp; //bits per sample (又称量化位数)
} wave_header_t;
typedef struct WaveStruct
{
FILE *fp; //file pointer
wave_header_t header; //header
uint8 data_flag[4]; //数据标识符
uint32 length; //采样数据总数
uint32 *pData; //data
} wave_t;
wave_t wave;
(2)读取文件头信息
/*
* open *.wav file
*/
void WaveOpen(char *file, int raw, int mono_stereo)
{
uchar temp = 0;
uint8 read_bytes = 0;
char *channel_mappings[] = {NULL,"mono","stereo"};
uint32 total_time = 0;
struct PlayTime //播放时间
{
uint8 hour;
uint8 minute;
uint8 second;
} play_time;
if(NULL == (wave.fp=fopen(file, "rb"))) /* open file */
{
printf("file %s open failure!\n", file);
}
/* read heade information */
if(4 != fread(wave.header.riff, sizeof(uint8), 4, wave.fp)) /* RIFF chunk */
{
printf("read riff error!\n");
return;
}
if(1 != fread(&wave.header.size, sizeof(uint32), 1, wave.fp)) /* SIZE : from here to file end */
{
printf("read size error!\n");
return;
}
if(4 != fread(wave.header.wave_flag, sizeof(uint8), 4, wave.fp)) /* wave file flag */
{
printf("read wave_flag error!\n");
return;
}
if(4 != fread(wave.header.fmt, sizeof(uint8), 4, wave.fp)) /* fmt chunk */
{
printf("read fmt error!\n");
return;
}
if(1 != fread(&wave.header.fmt_len, sizeof(uint32), 1, wave.fp)) /* fmt length */
{
printf("read fmt_len error!\n");
return;
}
if(1 != fread(&wave.header.tag, sizeof(uint16), 1, wave.fp)) /* tag : PCM or not */
{
printf("read tag error!\n");
return;
}
if(1 != fread(&wave.header.channels, sizeof(uint16), 1, wave.fp)) /* channels */
{
printf("read channels error!\n");
return;
}
if(1 != fread(&wave.header.samp_freq, sizeof(uint32), 1, wave.fp)) /* samp_freq */
{
printf("read samp_freq error!\n");
return;
}
if(1 != fread(&wave.header.byte_rate, sizeof(uint32), 1, wave.fp)) /* byte_rate : decode how many bytes per second */
{ /* byte_rate = samp_freq * bit_samp */
printf("read byte_rate error!\n");
return;
}
if(1 != fread(&wave.header.block_align, sizeof(uint16), 1, wave.fp)) /* quantize bytes for per samp point */
{
printf("read byte_samp error!\n");
return;
}
if(1 != fread(&wave.header.bit_samp, sizeof(uint16), 1, wave.fp)) /* quantize bits for per samp point */
{ /* bit_samp = byte_samp * 8 */
printf("read bit_samp error!\n");
return;
}
/* jump to "data" for reading data */
do
{
fread(&temp, sizeof(uchar), 1, wave.fp);
}
while('d' != temp);
wave.data_flag[0] = temp;
if(3 != fread(&wave.data_flag[1], sizeof(uint8), 3, wave.fp)) /* data chunk */
{
printf("read header data error!\n");
return;
}
if(1 != fread(&wave.length, sizeof(uint32), 1, wave.fp)) /* data length */
{
printf("read length error!\n");
}
/* jduge data chunk flag */
if(!StrCmp(wave.data_flag, "data", 4))
{
printf("error : cannot read data!\n");
return;
}
total_time = wave.length / wave.header.byte_rate;
play_time.hour = (uint8)(total_time / 3600);
play_time.minute = (uint8)((total_time / 60) % 60);
play_time.second = (uint8)(total_time % 60);
/* printf file header information */
printf("%s %ldHz %dbit, DataLen: %ld, Rate: %ld, Length: %2ld:%2ld:%2ld\n",
channel_mappings[wave.header.channels], //声道
wave.header.samp_freq, //采样频率
wave.header.bit_samp, //每个采样点的量化位数
wave.length,
wave.header.byte_rate,
play_time.hour,play_time.minute,play_time.second);
//fclose(wave.fp); /* close wave file */
}
按结构体一点点的读出文件头的信息,请注意
/* jump to "data" for reading data */
的那一段,“先识别data标识符,再接着往下读取”。
(3)读数据
在读完数据长度之后就全是数据了,直接使用fread按uint32格式读取数据即可,我这里每次读取1152个数据(即一帧)。
/*
* get wave data
*/
uint32* GetWave(void)
{
static uint32 buffer[1152] = {0};
uint16 n = 0;
uint16 p = 0;
p = fread(buffer, sizeof(uint32), n, wave.fp);
if(!p)
{
return 0;
}
else
{
for(; p
上面程序中注意几点,
(1)不要定义大容量的局部变量,因为局部变量存放在堆栈中。如果一定要定义,要定义成static类型。
(2)不要返回局部变量的的地址,因为在堆栈中的地址值是不确定的。
上面的程序返回局部数组的指针,前提是 已经将数据存放在静态数据存储区。
但不管怎样,返回局部变量的地址总是不好的。