普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
普里姆算法图解
下面我们将以上面的G4图为例,来对普里姆算法进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。
细分步骤如下:
步骤解释如下:
初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T为空! 第1步:将顶点A加入到U中:此时,U={A}。
第2步:将顶点B加入到U中:上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中:此时,U={A,B}。
第3步:将顶点F加入到U中:上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中:此时,U={A,B,F}。
第4步:将顶点E加入到U中:上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中: 此时,U={A,B,F,E}。
第5步:将顶点D加入到U中:上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,(E,D)的权值最小。将顶点D添加到U中:此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中:上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中: 此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中:上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中:此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
以"邻接矩阵"为例对普里姆算法进行说明
对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
// 邻接矩阵其中Graph 是邻接矩阵对应的结构体。
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
char start; // 边的起点
char end; // 边的终点
int weight; // 边的权重
}EData;
2. 普里姆算法
#include#include #include #include #define MAX 100
#define INF (~(0x1<<31))
typedef struct Graph
{
char vexs[MAX];
int vexnum;
int edgnum;
int matrix[MAX][MAX];
} Graph,*PGraph;
typedef struct EdgeData
{
char start;
char end;
int weight;
} EData;
static int get_position(Graph g,char ch)
{
int i;
for(i=0; i; i++)
if(g.vexs[i]==ch)
return i;
return -1;
}
Graph* create_graph()
{
char vexs[]= {'A','B','C','D','E','F','G'};
int matrix[][7]=
{
{0,12,INF,INF,INF,16,14},
{12,0,10,INF,INF,7,INF},
{INF,10,0,3,5,6,INF},
{INF,INF,3,0,4,INF,INF},
{INF,INF,5,4,0,INF,8},
{16,7,6,INF,2,0,9},
{14,INF,INF,INF,8,9,0}
};
int vlen=sizeof(vexs)/sizeof(vexs[0]);
int i,j;
Graph *pG;
if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
return NULL;
memset(pG,0,sizeof(pG));
pG->vexnum=vlen;
for(i=0; ivexnum; i++)
pG->vexs[i]=vexs[i];
for(i=0; ivexnum; i++)
for(j=0; jvexnum; j++)
pG->matrix[i][j]=matrix[i][j];
for(i=0; ivexnum; i++)
{
for(j=0; jvexnum; j++)
{
if(i!=j&&pG->matrix[i][j]!=INF)
pG->edgnum++;
}
}
pG->edgnum/=2;
return pG;
}
void print_graph(Graph G)
{
int i,j;
printf("Matrix Graph: \n");
for(i=0; i; i++)
{
for(j=0; j; j++)
printf("%10d ",G.matrix[i][j]);
printf("\n");
}
}
EData* get_edges(Graph G)
{
EData *edges;
edges=(EData*)malloc(G.edgnum*sizeof(EData));
int i,j;
int index=0;
for(i=0; i; i++)
{
for(j=i+1; j; j++)
{
if(G.matrix[i][j]!=INF)
{
edges[index].start=G.vexs[i];
edges[index].end=G.vexs[j];
edges[index].weight=G.matrix[i][j];
index++;
}
}
}
return edges;
}
void prim(Graph G,int start)
{
int min,i,j,k,m,n,sum;
int index=0;
char prim[MAX];
int weight[MAX];
prim[index++]=G.vexs[start];
for(i=0; i; i++)
weight[i]=G.matrix[start][i];
weight[start]=0;
for(i=0; i; i++)
{
//i用来控制循环的次数,每次加入一个结点,但是因为start已经加入,所以当i为start是跳过
if(start==i)
continue;
j=0;
k=0;
min=INF;
for(k=0; k; k++)
{
if(weight[k]&&weight[k]{
min=weight[k];
j=k;
}
}
sum+=min;
prim[index++]=G.vexs[j];
weight[j]=0;
for(k=0; k; k++)
{
if(weight[k]&&G.matrix[j][k]weight[k]=G.matrix[j][k];
}
}
// 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在G中的位置
n = get_position(G, prim[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = get_position(G, prim[j]);
if (G.matrix[m][n]min = G.matrix[m][n];
}
sum += min;
}
printf("PRIM(%c)=%d: ", G.vexs[start], sum);
for (i = 0; i < index; i++)
printf("%c ", prim[i]);
printf("\n");
}
int main()
{
Graph *pG;
pG=create_graph();
print_graph(*pG);
prim(*pG,0);
}
转自:微信公众号:燕哥带你学算法(Jeemy110)
原文链接:点击打开链接