逻辑回归梯度下降法详解

引言

逻辑回归常用于预测疾病发生的概率,例如因变量是是否恶性肿瘤,自变量是肿瘤的大小、位置、硬度、患者性别、年龄、职业等等(很多文章里举了这个例子,但现代医学发达,可以通过病理检查,即获取标本放到显微镜下观察是否恶变来判断);广告界中也常用于预测点击率或者转化率(cvr/ctr),例如因变量是是否点击,自变量是物料的长、宽、广告的位置、类型、用户的性别、爱好等等。 
本章主要介绍逻辑回归算法推导、梯度下降法求最优值的推导及spark的源码实现。

常规方法

一般回归问题的步骤是: 
1. 寻找预测函数(h函数,hypothesis) 
2. 构造损失函数(J函数) 
3. 使损失函数最小,获得回归系数θ

而第三步中常见的算法有: 
1. 梯度下降 
2. 牛顿迭代算法 
3. 拟牛顿迭代算法(BFGS算法和L-BFGS算法) 
其中随机梯度下降和L-BFGS在spark mllib中已经实现,梯度下降是最简单和容易理解的。

推导

二元逻辑回归

  1. 构造预测函数 

    hθ(x)=g(θTx)=11+eθTxhθ(x)=g(θTx)=11+e−θTx

    其中: 
    θTx=i=1nθixi=θ0+θ1x1+θ2x2+...+θnxnθ=θ0θ1...θn,x=x0x1...xnθTx=∑i=1nθixi=θ0+θ1x1+θ2x2+...+θnxnθ=[θ0θ1...θn],x=[x0x1...xn]

    为何LR模型偏偏选择sigmoid 函数呢?逻辑回归不是回归问题,而是二分类问题,因变量不是0就是1,那么我们很自然的认为概率函数服从伯努利分布,而伯努利分布的指数形式就是个sigmoid 函数。 
    函数hθ(x)hθ(x)表示结果取1的概率,那么对于分类1和0的概率分别为: 
    P(y=1|x;θ)=hθ(x)P(y=0|x;θ)=1hθ(x)P(y=1|x;θ)=hθ(x)P(y=0|x;θ)=1−hθ(x)

    概率一般式为: 
    P(y|x;θ)=(hθ(x))y((1hθ(x)))1yP(y|x;θ)=(hθ(x))y((1−hθ(x)))1−y

  2. 最大似然估计的思想 
    当从模型总体随机抽取m组样本观测值后,我们的目标是寻求最合理的参数估计θθ′使得从模型中抽取该m组样本观测值的概率最大。最大似然估计就是解决此类问题的方法。求最大似然函数的步骤是:

    1. 写出似然函数
    2. 对似然函数取对数
    3. 对对数似然函数的参数求偏导并令其为0,得到方程组
    4. 求方程组的参数

    为什么第三步要取对数呢,因为取对数后,乘法就变成加法了,且单调性一致,不会改变极值的位置,后边就更好的求偏导。

  3. 构造损失函数 
    线性回归中的损失函数是: 
    J(θ)=12mi=1m(yihθ(xi))2J(θ)=12m∑i=1m(yi−hθ(xi))2

    线性回归损失函数有很明显的实际意义,就是平方损失。而逻辑回归却不是,它的预测函数hθ(x)hθ(x)明显是非线性的,如果类比的使用线性回归的损失函数于逻辑回归,那J(θ)J(θ)很有可能就是非凸函数,即存在很多局部最优解,但不一定是全局最优解。我们希望构造一个凸函数,也就是一个碗型函数做为逻辑回归的损失函数。 
    按照求最大似然函数的方法,逻辑回归似然函数: 
    L(θ)=i=1mP(yi|xi;θ)=i=1m(hθ(xi))yi((1hθ(xi)))1yiL(θ)=∏i=1mP(yi|xi;θ)=∏i=1m(hθ(xi))yi((1−hθ(xi)))1−yi

    其中m表示样本数量,取对数: 
    l(θ)=logL(θ)=i=1m(yiloghθ(xi)+(1yi)log(1hθ(xi)))l(θ)=logL(θ)=∑i=1m(yiloghθ(xi)+(1−yi)log(1−hθ(xi)))

    我们的目标是求最大l(θ)l(θ)时的θθ,如上函数是一个上凸函数,可以使用梯度上升来求得最大似然函数值(最大值)。或者上式乘以-1,变成下凸函数,就可以使用梯度下降来求得最小负似然函数值(最小值): 
    J(θ)=1ml(θ)J(θ)=−1ml(θ)

    同样是取极小值,思想与损失函数一致,即我们把如上的J(θ)J(θ)作为逻辑回归的损失函数。Andrew Ng的课程中,上式乘了一个系数1/m,我怀疑就是为了和线性回归的损失函数保持一致吧。
  4. 求最小值时的参数 
    我们求最大似然函数参数的第三步时,令对参数θθ偏导=0,然后求解方程组。考虑到参数数量的不确定,即参数数量很大,此时直接求解方程组的解变的很困难,或者根本就求不出精确的参数。于是,我们用随机梯度下降法,求解方程组的值。 
    当然也可以使用牛顿法、拟牛顿法。梯度下降法是最容易理解和推导的,如下是推导过程: 
    梯度下降θθ的更新过程,走梯度方向的反方向: 
    θj:=θjαδδθjJ(θ)θj:=θj−αδδθjJ(θ)

    其中: 
    δδθjJ(θ)=1mi=1m(yi1hθ(xi)δδθjhθ(xi)(1yi)11hθ(xi)δδθjhθ(xi))=1mi=1m(yi1g(θTxi)(1yi)11g(θTxi))δδθjg(θTxi)=1mi=1m(yi1g(θTxi)(1yi)11g(θTxi))g(θTxi)(1g(θTxi))δδθjθTxi=1mi=1m(yi(1g(θTxi))(1yi)g(θTxi))xji=1mi=1m(yig(θTxi))xji=1mi=1m(hθ(xi)yi))xjiδδθjJ(θ)=−1m∑i=1m(yi1hθ(xi)δδθjhθ(xi)−(1−yi)11−hθ(xi)δδθjhθ(xi))=−1m∑i=1m(yi1g(θTxi)−(1−yi)11−g(θTxi))δδθjg(θTxi)=−1m∑i=1m(yi1g(θTxi)−(1−yi)11−g(θTxi))g(θTxi)(1−g(θTxi))δδθjθTxi=−1m∑i=1m(yi(1−g(θTxi))−(1−yi)g(θTxi))xij=−1m∑i=1m(yi−g(θTxi))xij=1m∑i=1m(hθ(xi)−yi))xij

    第二步推导请注意: 
    (f(x)g(x))=g(x)f(x)f(x)g(x)g2(x)(ex)=ex(f(x)g(x))′=g(x)f′(x)−f(x)g′(x)g2(x)(ex)′=ex

    那么可以推导: 
    δδθjg(θTxi)=eθTxi(1+eθTxi)2δδθj(1)θTxi=g(θTxi)(1g(θTxi))δθjθTxiδδθjg(θTxi)=−e−θTxi(1+e−θTxi)2δδθj(−1)θTxi=g(θTxi)(1−g(θTxi))δθjθTxi

    因此更新过程可以写成: 
    θj:=θjα1mi=1m(hθ(xi)yi))xjiθj:=θj−α1m∑i=1m(hθ(xi)−yi))xij

    那迭代多少次停止呢,spark是指定迭代次数和比较两次梯度变化或者cost变化小于一定值时停止。
  5. 过拟合问题 
    过拟合问题,即我们求得的回归系数在实验集中效果很好,但之外的数据效果很差。机器学习中的特征基本上是靠人的经验选择的,有可能某一些特征或者特征组合与因变量没有任何关系,即某些θi0θi≈0。所以我们需要把不必要的特征剔除,一般我们使用正则化来保留所有特征,并让它相应的系数0≈0,L1范数正则化后θθ的更新: 
    θj:=θjα1mi=1m(hθ(xi)yi))xjiλmθjθj:=θj−α1m∑i=1m(hθ(xi)−yi))xij−λmθj

    λλ越大,对模型的复杂度惩罚越大,有可能出现欠拟合现象。λλ越小,惩罚越小,可能新出现过拟合现象。spark逻辑回归的随机梯度下降法中,使用的是L2范数正则化。

多元逻辑回归

推广到K元逻辑回归,即因变量为0、1、2、…、k-1。在二元逻辑回归中有这样的性质: 

logP(y=1|x,θ)P(y=0|x,θ)=θTxlogP(y=1|x,θ)P(y=0|x,θ)=θTx

推广至K元逻辑回归: 
logP(y=1|x,θ)P(y=0|x,θ)=θT1xlogP(y=2|x,θ)P(y=0|x,θ)=θT2x...logP(y=K1|x,θ)P(y=0|x,θ)=θTK1xlogP(y=1|x,θ)P(y=0|x,θ)=θ1TxlogP(y=2|x,θ)P(y=0|x,θ)=θ2Tx...logP(y=K−1|x,θ)P(y=0|x,θ)=θK−1Tx

其中, θ=(θ1,θ2,...,θK1)Tθ=(θ1,θ2,...,θK−1)T ,是个(k-1)*(n+1)的矩阵,n为特征的个数,加1是增加截距项。去除对数则得到概率分布: 
P(y=0|x,θ)=11+K1i=1eθTixP(y=1|x,θ)=eθT1x1+K1i=1eθTix...P(y=K1|x,θ)=eθTK1x1+K1i=1eθTixP(y=0|x,θ)=11+∑i=1K−1eθiTxP(y=1|x,θ)=eθ1Tx1+∑i=1K−1eθiTx...P(y=K−1|x,θ)=eθK−1Tx1+∑i=1K−1eθiTx

K元逻辑回归似然函数: 
L(θ)=i=1mP(y|x,θ)L(θ)=∏i=1mP(y|x,θ)

定义: 
α(yi)=1ifyi=0α(yi)=0ifyi0α(yi)=1ifyi=0α(yi)=0ifyi≠0

取对数: 
l(θ,x)=i=1mlogP(yi|xi,θ)=i=1mα(yi)logP(y=0|xi,θ)+(1α(yi))logP(yi|xi,θ)=i=1mα(yi)log11+K1k=1eθTkx+(1α(yi))logeθTyix1+K1k=1eθTkx=i=1m(1α(yi))θTyixlog(1+k=1K1eθTkx)l(θ,x)=∑i=1mlogP(yi|xi,θ)=∑i=1mα(yi)logP(y=0|xi,θ)+(1−α(yi))logP(yi|xi,θ)=∑i=1mα(yi)log11+∑k=1K−1eθkTx+(1−α(yi))logeθyiTx1+∑k=1K−1eθkTx=∑i=1m(1−α(yi))θyiTx−log(1+∑k=1K−1eθkTx)

同样的我们得到损失函数: 
J(θ,x)=1ml(θ,x)J(θ,x)=−1ml(θ,x)

θθ 更新过程: 
θj:=θjαδδθjJ(θ,x)θj:=θj−αδδθjJ(θ,x)

θθ 求偏导得到梯度: 
Gkj(θ,x)=1mδl(θ,x)δθkj=1m(i=1m(1α(yi))xijδk,yieθTxi1+eθTxixij)Gkj(θ,x)=−1mδl(θ,x)δθkj=−1m(∑i=1m(1−α(yi))xijδk,yi−eθTxi1+eθTxixij)

其中k表示因变量,j表示特征数量,i表示实验数。 
spark源码注释中,稍稍不一样, l(w,x)l(w,x) 乘以了-1,其实与我们上边推导的 1m−1m 意义一样。我们来看看spark的推导过程。 
P(y=0|x,w)=1/(1+iK1exp(xwi))P(y=1|x,w)=exp(xw1)/(1+iK1exp(xwi))...P(y=K1|x,w)=exp(xwK1)/(1+iK1exp(xwi)P(y=0|x,w)=1/(1+∑iK−1exp⁡(xwi))P(y=1|x,w)=exp(xw1)/(1+∑iK−1exp⁡(xwi))...P(y=K−1|x,w)=exp(xwK−1)/(1+∑iK−1exp⁡(xwi)

取对数: 
l(w,x)=logP(y|x,w)=α(y)logP(y=0|x,w)(1α(y))logP(y|x,w)=log(1+iK1exp(xwi))(1α(y))xwy1=log(1+iK1exp(marginsi))(1α(y))marginsy1l(w,x)=−logP(y|x,w)=−α(y)logP(y=0|x,w)−(1−α(y))logP(y|x,w)=log(1+∑iK−1exp⁡(xwi))−(1−α(y))xwy−1=log(1+∑iK−1exp⁡(marginsi))−(1−α(y))marginsy−1

其中: 
α(i)=1ifi!=0,α(i)=0ifi==0,marginsi=xwi.α(i)=1ifi!=0,α(i)=0ifi==0,marginsi=xwi.

求偏导: 
l(w,x)wij=(exp(xwi)/(1+kK1exp(xwk))(1α(y)δy,i+1))xj=multiplierixj∂l(w,x)∂wij=(exp⁡(xwi)/(1+∑kK−1exp⁡(xwk))−(1−α(y)δy,i+1))∗xj=multiplieri∗xj

其中: 
δi,j=1ifi==j,δi,j=0ifi!=j,multiplier=exp(marginsi)/(1+kK1exp(marginsi))(1α(y)δy,i+1)δi,j=1ifi==j,δi,j=0ifi!=j,multiplier=exp⁡(marginsi)/(1+∑kK−1exp⁡(marginsi))−(1−α(y)δy,i+1)

为了不让数值溢出,xw项减了maxMargin, l(w,x)l(w,x) 改写为: 
l(w,x)=log(1+iK1exp(marginsi))(1α(y))marginsy1=log(exp(maxMargin)+iK1exp(marginsimaxMargin))+maxMargin(1α(y))marginsy1=log(1+sum)+maxMargin(1α(y))marginsy1l(w,x)=log(1+∑iK−1exp⁡(marginsi))−(1−α(y))marginsy−1=log(exp⁡(−maxMargin)+∑iK−1exp⁡(marginsi−maxMargin))+maxMargin−(1−α(y))marginsy−1=log(1+sum)+maxMargin−(1−α(y))marginsy−1

其中: 
sum=exp(maxMargin)+iK1exp(marginsimaxMargin)1sum=exp⁡(−maxMargin)+∑iK−1exp⁡(marginsi−maxMargin)−1

而multiplier可以表示为: 
multiplier=exp(marginsi)/(1+kK1exp(marginsi))(1α(y)δy,i+1)=exp(marginsimaxMargin)/(1+sum)(1α(y)δy,i+1)multiplier=exp⁡(marginsi)/(1+∑kK−1exp⁡(marginsi))−(1−α(y)δy,i+1)=exp⁡(marginsi−maxMargin)/(1+sum)−(1−α(y)δy,i+1)

spark源码

先看实例代码:

import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionModel}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils

// Load training data in LIBSVM format.
//样例数据格式:
//1 特征id1:值id1 特征id2:值id2 ...
//0 特征id1:值id3 特征id4:值id4 ...
//特征和特征对应的值都使用数值一一标示了
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")

// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)

// Run training algorithm to build the model
// 官方样例分类数设置为10,但样例数据因变量是0和1,所以这里应该时设置错了.
// 梯度下降法每次迭代都会变量整个样本集,推荐使用拟牛顿法LBFGS,后续文章中继续介绍
val model = new LogisticRegressionWithLBFGS()
  .setNumClasses(10)
  .run(training)

// Compute raw scores on the test set.
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
  val prediction = model.predict(features)
  (prediction, label)
}

// Get evaluation metrics.
val metrics = new MulticlassMetrics(predictionAndLabels)
val precision = metrics.precision
println("Precision = " + precision)

// Save and load model
// 输出是个模型,就是一个向量$\theta$,带入概率分布函数求得类型的概率
model.save(sc, "myModelPath")
val sameModel = LogisticRegressionModel.load(sc, "myModelPath")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

随机梯度下降调用:

 /**
   * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed
   * number of iterations of gradient descent using the specified step size. Each iteration uses
   * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in
   * gradient descent are initialized using the initial weights provided.
   * NOTE: Labels used in Logistic Regression should be {0, 1}
   *
   * @param input RDD of (label, array of features) pairs.
   * @param numIterations Number of iterations of gradient descent to run.迭代次数
   * @param stepSize Step size to be used for each iteration of gradient descent.步长
   * @param miniBatchFraction Fraction of data to be used per iteration.用于模型预估数据的比例
   * @param initialWeights Initial set of weights to be used. Array should be equal in size to the number of features in the data.初始化权重
   */
  @Since("1.0.0")
  def train(
      input: RDD[LabeledPoint],
      numIterations: Int,
      stepSize: Double,
      miniBatchFraction: Double,
      initialWeights: Vector): LogisticRegressionModel = {
    new LogisticRegressionWithSGD(stepSize, numIterat2 Aions, 0.0, miniBatchFraction)
      .run(input, initialWeights)
  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

LogisticRegressionWithLBFGS和LogisticRegressionWithSGD都继承于GeneralizedLinearModel,它的run方法:

 def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {

    if (numFeatures < 0) {
    // 输入的特征数等于第一行特征个数.
      numFeatures = input.map(_.features.size).first()
    }
    // 输入数据的存储类别.
    if (input.getStorageLevel == StorageLevel.NONE) {
      logWarning("The input data is not directly cached, which may hurt performance if its"
        + " parent RDDs are also uncached.")
    }

    // Check the data properties before running the optimizer
    if (validateData && !validators.forall(func => func(input))) {
      throw new SparkException("Input validation failed.")
    }

    /**
     * Scaling columns to unit variance as a heuristic to reduce the condition number:
     *
     * During the optimization process, the convergence (rate) depends on the condition number of
     * the training dataset. Scaling the variables often reduces this condition number
     * heuristically, thus improving the convergence rate. Without reducing the condition number,
     * some training datasets mixing the columns with different scales may not be able to converge.
     *
     * GLMNET and LIBSVM packages perform the scaling to reduce the condition number, and return
     * the weights in the original scale.
     * See page 9 in http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
     *
     * Here, if useFeatureScaling is enabled, we will standardize the training features by dividing
     * the variance of each column (without subtracting the mean), and train the model in the
     * scaled space. Then we transform the coefficients from the scaled space to the original scale
     * as GLMNET and LIBSVM do.
     *通过每一列除以这一列的标准差,将数据标准化.LBFGS算法中可以启用.
     * Currently, it's only enabled in LogisticRegressionWithLBFGS
     */
    val scaler = if (useFeatureScaling) {
      new StandardScaler(withStd = true, withMean = false).fit(input.map(_.features))
    } else {
      null
    }

    // Prepend an extra variable consisting of all 1.0's for the intercept.
    // TODO: Apply feature scaling to the weight vector instead of input data.
    // 默认是不加入截距项的
    val data =
      if (addIntercept) {
        if (useFeatureScaling) {
          input.map(lp => (lp.label, appendBias(scaler.transform(lp.features)))).cache()
        } else {
          input.map(lp => (lp.label, appendBias(lp.features))).cache()
        }
      } else {
        if (useFeatureScaling) {
          input.map(lp => (lp.label, scaler.transform(lp.features))).cache()
        } else {
          input.map(lp => (lp.label, lp.features))
        }
      }

    /**
     * TODO: For better convergence, in logistic regression, the intercepts should be computed
     * from the prior probability distribution of the outcomes; for linear regression,
     * the intercept should be set as the average of response.
     */
    val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) {
      appendBias(initialWeights)
    } else {
      /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */
      initialWeights
    }
    //SGD 或者 LBFGS算法
    val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept)
    ...
    createModel(weights, intercept)
  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

梯度下降SGD实现:

def runMiniBatchSGD(
      data: RDD[(Double, Vector)],
      gradient: Gradient,
      updater: Updater,
      stepSize: Double,
      numIterations: Int,
      regParam: Double,
      miniBatchFraction: Double,
      initialWeights: Vector,
      convergenceTol: Double): (Vector, Array[Double]) = {
    ...
      //不知道此数组干啥用的
    val stochasticLossHistory = new ArrayBuffer[Double](numIterations)
    ...
    // Initialize weights as a column vector
    var weights = Vectors.dense(initialWeights.toArray)
    val n = weights.size

    /**
     * For the first iteration, the regVal will be initialized as sum of weight squares
     * if it's L2 updater; for L1 updater, the same logic is followed.
     */
    var regVal = updater.compute(
      weights, Vectors.zeros(weights.size), 0, 1, regParam)._2

    var converged = false // indicates whether converged based on convergenceTol
    var i = 1
    while (!converged && i <= numIterations) {
      val bcWeights = data.context.broadcast(weights)
      // Sample a subset (fraction miniBatchFraction) of the total data
      // compute and sum up the subgradients on this subset (this is one map-reduce)
      val (gradientSum, lossSum, miniBatchSize) = data.sample(false, miniBatchFraction, 42 + i)
        .treeAggregate((BDV.zeros[Double](n), 0.0, 0L))(
          seqOp = (c, v) => {
            // c: (grad, loss, count), v: (label, features)
            // 返回损失loss,没看明白为何要算loss,及loss为何这么算log(1 + exp(margin))
            // 主要目的时计算c._1梯度向量
            val l = gradient.compute(v._2, v._1, bcWeights.value, Vectors.fromBreeze(c._1))
            (c._1, c._2 + l, c._3 + 1)
          },
          combOp = (c1, c2) => {
            // c: (grad, loss, count)
            (c1._1 += c2._1, c1._2 + c2._2, c1._3 + c2._3)
          })

      if (miniBatchSize > 0) {
        /**
         * lossSum is computed using the weights from the previous iteration
         * and regVal is the regularization value computed in the previous iteration as well.
         */
        stochasticLossHistory.append(lossSum / miniBatchSize + regVal)
        // 正则化
        val update = updater.compute(
          weights, Vectors.fromBreeze(gradientSum / miniBatchSize.toDouble),
          stepSize, i, regParam)
        weights = update._1
        regVal = update._2

        previousWeights = currentWeights
        currentWeights = Some(weights)
        if (previousWeights != None && currentWeights != None) {
          converged = isConverged(previousWeights.get,
            currentWeights.get, convergenceTol)
        }
      } else {
        logWarning(s"Iteration ($i/$numIterations). The size of sampled batch is zero")
      }
      i += 1
    }

    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
      stochasticLossHistory.takeRight(10).mkString(", ")))

    (weights, stochasticLossHistory.toArray)

  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

combOp是θθ的更新过程中的过程.在二元逻辑回归情况下:

case 2 =>
        /**
         * For Binary Logistic Regression.
         *
         * Although the loss and gradient calculation for multinomial one is more generalized,
         * and multinomial one can also be used in binary case, we still implement a specialized
         * binary version for performance reason.
         */
        val margin = -1.0 * dot(data, weights)
        val multiplier = (1.0 / (1.0 + math.exp(margin))) - label
        axpy(multiplier, data, cumGradient)
        if (label > 0) {
          // The following is equivalent to log(1 + exp(margin)) but more numerically stable.
          MLUtils.log1pExp(margin)
        } else {
          MLUtils.log1pExp(margin) - margin
        }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

margin 就是(θTx−θTx),而multiplier就是hθ(xi)yihθ(xi)−yi.axpy方法就是(hθ(xi)yi))xi(hθ(xi)−yi))xi.

参考

  1. http://blog.csdn.net/pakko/article/details/37878837
  2. http://spark.apache.org/docs/latest/mllib-linear-methods.html
  3. http://www.slideshare.net/dbtsai/2014-0620-mlor-36132297
  4. https://private.codecogs.com/latex/eqneditor.php?lang=zh-cn(数学公式编辑器)

你可能感兴趣的:(逻辑回归梯度下降法详解)