现在ARM下对SoC开发板的硬件描述都是采用devicetree文件,使用linux自带的dtc程序将dts编译成dtb之后,由u-boot将dtb导入给linux内核,linux内核读取dtb,然后注册设备的resource,linux内核使用of_系列函数API读取硬件资源。具体的说明可以看下
http://blog.csdn.net/21cnbao/article/details/8457546
.dts文件根据具体的硬件配置好后,编译生成.dtb文件。
然后需要在menuconfig内核配置中为硬件选择驱动程序,只有硬件驱动程序和dts中的硬件名字匹配时,才能触发驱动的probe函数
rtc-8564和pcf8563的驱动是兼容的,均为pcf8563驱动。
注:以下的分析基于3.12.0linux内核。个人分析难免存在纰漏,恳请大家指正。
一、I2C的linux主要涉及4个结构体:i2c_adapter,i2c_algorithm,i2c_client,i2c_driver
struct i2c_adapter {
struct module *owner;
unsigned int class; /* classes to allow probing for */
const struct i2c_algorithm *algo; /* the algorithm to access the bus */
void *algo_data;
/* data fields that are valid for all devices */
struct rt_mutex bus_lock;
int timeout; /* in jiffies */
int retries;
struct device dev; /* the adapter device */
int nr;
char name[48];
struct completion dev_released;
struct mutex userspace_clients_lock;
struct list_head userspace_clients;
struct i2c_bus_recovery_info *bus_recovery_info;
};
i2c总线控制器数据依附于algo_data,比如xi2cps,s3c24xx_i2c。
struct device dev;成员表明i2c_adapter是一个硬件,对应SoC上的I2C控制器。
而i2c_algorithm则是这个I2C控制器的底层驱动程序。
同理:
struct i2c_client {
unsigned short flags; /* div., see below */
unsigned short addr; /* chip address - NOTE: 7bit */
/* addresses are stored in the */
/* _LOWER_ 7 bits */
char name[I2C_NAME_SIZE];
struct i2c_adapter *adapter; /* the adapter we sit on */
struct i2c_driver *driver; /* and our access routines */
struct device dev; /* the device structure */
int irq; /* irq issued by device */
struct list_head detected;
};
struct i2c_client代表一个挂载到i2c总线上的i2c从设备,该设备所需要的数据结构,其中包括
struct device dev表明struct i2c_client代表的是一个硬件,比如eeprom芯片,或则rtc芯片,通过i2c总线连接到i2c_adapter硬件上。
而i2c_driver则是这个i2c_client芯片硬件的驱动程序。
我们一般会对每个I2C字符设备定义一个私有信息结构体,而i2c_client一般被包含在这个私有信息结构体中。看过LDR3源代码的hacker应该比较清楚。
i2c_client依附于i2c_adapter,也就是I2C设备和I2C总线控制器的对应关系,一个i2c_adapter可以挂接多个i2c_client,i2c_adapter的struct list_head userspace_clients;结构成员就是所有client的链表。
linux的最新版本基本上支持目前所有的I2C适配器硬件和I2C从设备,但是对于工程师来说,可能要面临各种情况:为i2c_adapter和i2c_client编写驱动程序。
二、I2C核心
I2C核心是源码位于drivers/i2c/i2c-core.c,它并不依赖于硬件平台的接口函数,是I2C总线驱动和设备驱动的纽带。
增加/删除i2c_adapter
int i2c_add_adapter(struct i2c_adapter *adapter) //调用i2c_register_adapter()
int i2c_del_adapter(struct i2c_adapter *adapter)
增加/删除i2c_driver
int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
int i2c_add_driver(struct i2c_driver *driver) //调用i2c_register_driver
void i2c_del_driver(struct i2c_driver *driver)
增加/删除i2c_client
struct i2c_client *i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
void i2c_unregister_device(struct i2c_client *client)
注:在2.6.30版本之前使用的是i2c_attach_client()和i2c_detach_client()函数。之后attach被merge到了i2c_new_device中,而detach直接被unregister取代。实际上这两个函数内部都是调用了device_register()和device_unregister()
I2C传输、发送接收
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
int i2c_master_send(struct i2c_client *client,const char *buf ,int count)
int i2c_master_recv(struct i2c_client *client, char *buf ,int count)
i2c_transfer()函数用于进行I2C 适配器和I2C 设备之间的一组消息交互,i2c_master_send()函数和i2c_master_recv()函数内部会调用i2c_transfer()函数分别完成一条写消息和一条读消息。
i2c_transfer()本身不能和硬件完成消息交互,它寻找i2c_adapter对应的i2c_algorithm,要实现数据传送就要实现i2c_algorithm的master_xfer(),这个函数与具体的硬件有关,大部分时间由厂商完成。
i2c_transfer()通过调用__i2c_transfer()完成I2C通讯:
int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
unsigned long orig_jiffies;
int ret, try;
/* Retry automatically on arbitration loss */
orig_jiffies = jiffies;
for (ret = 0, try = 0; try <= adap->retries; try++) {
ret = adap->algo->master_xfer(adap, msgs, num);
if (ret != -EAGAIN)
break;
if (time_after(jiffies, orig_jiffies + adap->timeout))
break;
}
return ret;
}
可见retries为重传尝试次数,timeout为超时时间。
三、Linux I2C总线驱动
1、I2C适配器的加载和卸除
加载:申请硬件资源,比如IO地址,中断号,调用i2c_add_adapter加载适配器
i2c_add_adapter中会调用i2c_register_adapter函数
static int i2c_register_adapter(struct i2c_adapter *adap)
{
... ...
device_register(&adap->dev); //完成I2C主设备adapter的注册,即注册object和发送uevent等
i2c_scan_static_board_info(adap); //注册i2c_client
... ...
}
static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
{
struct i2c_devinfo *devinfo;
down_read(&__i2c_board_lock);
list_for_each_entry(devinfo, &__i2c_board_list, list) {
if (devinfo->busnum == adapter->nr
&& !i2c_new_device(adapter,
&devinfo->board_info))
dev_err(&adapter->dev,
"Can't create device at 0x%02x\n",
devinfo->board_info.addr);
}
up_read(&__i2c_board_lock);
}
i2c_new_device调用device_register注册i2c从设备。
那么,这个I2C从设备组成的双向循环链表,是什么时候通过什么方式建立起来的呢?
以 /arch/arm/mach-pxa/saar.c 为例
static void __init saar_init(void)
{
... ...
saar_init_i2c();
........
}
static void __init saar_init_i2c(void)
{
pxa_set_i2c_info(NULL);
i2c_register_board_info(0, ARRAY_AND_SIZE(saar_i2c_info));
}
static struct i2c_board_info saar_i2c_info[] = {
[0] = {
.type = "da9034",
.addr = 0x34,
.platform_data = &saar_da9034_info,
.irq = PXA_GPIO_TO_IRQ(mfp_to_gpio(MFP_PIN_GPIO83)),
},
};
/* drivers/i2c/i2c-boardinfo.c */
int __init i2c_register_board_info(int busnum, structi2c_board_info const *info, unsigned len)
{
... ...
struct i2c_devinfo *devinfo;
devinfo->board_info = *info;
list_add_tail(&devinfo->list, &__i2c_board_list); //将I2C从设备加入该链表中
... ...
}
所以,在系统初始化的过程中,我们可以通过 i2c_register_board_info,将所需要的I2C从设备加入一个名为__i2c_board_list双向循环链表,系统在成功加载I2C主设备adapt后,就会对这张链表里所有I2C从设备逐一地完成 i2c_client的注册。
也就是说,i2c_client和i2c_adapter都是由i2c_core来维护的。
在xilinx-linux中,i2c从设备是通过dts文件传递给内核的,内核通过zynq_init_machine函数注册所有的i2c从设备,i2c_client.
在linux的设备和驱动管理体系中,所有的非热插拔设备默认是在 init_machine函数成员中加入相应维护设备的双向链表中,包括platform_device和其他的设备。当一个特定的设备驱动通过driver_register加入对应的总线下时,回去遍历对应总线下的设备双向链表,当驱动和设备匹配时,会触发驱动的probe函数。
DT_MACHINE_START(XILINX_EP107, "Xilinx Zynq Platform")
.smp = smp_ops(zynq_smp_ops),
.map_io = zynq_map_io,
.init_irq = zynq_irq_init,
.init_machine = zynq_init_machine,
.init_late = zynq_init_late,
.init_time = zynq_timer_init,
.dt_compat = zynq_dt_match,
.reserve = zynq_memory_init,
.restart = zynq_system_reset,
MACHINE_END
可以参考mach-zynq的电路板初始化代码
卸除:释放硬件资源,调用i2c_del_adapter卸载i2c适配器
void i2c_del_adapter(struct i2c_adapter *adap)
{
..........
list_for_each_entry_safe(client, next, &adap->userspace_clients,
detected) {
dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
client->addr);
list_del(&client->detected);
i2c_unregister_device(client);
}
卸载所有的从i2c设备
..............
device_unregister(&adap->dev);
卸载i2c适配器
..............
}
2、编写I2C的总线通讯方法algorithm
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num);
/* To determine what the adapter supports */
u32 (*functionality) (struct i2c_adapter *);
主要实现上面的两个函数。
大部分时间,我们需要定义一个XXX_i2c结构体,比如drivers/i2c/busses/i2c-s3c2410.c中的struct s3c24xx_i2c。
XXX_i2c结构体中包含struct i2c_msg *msg;struct i2c_adapter adap;void __iomem *regs;等
struct i2c_msg *msg接收用户层的数据发到i2c总线,或从i2c总线读取数据到用户层。
在适配器的probe函数中:
struct xi2cps *id;
platform_set_drvdata(pdev, id);
id->adap.dev.of_node = pdev->dev.of_node;
id->adap.algo = (struct i2c_algorithm *) &xi2cps_algo;
id->adap.timeout = 0x1F; /* Default timeout value */
id->adap.retries = 3; /* Default retry value. */
id->adap.algo_data = id;
id->adap.dev.parent = &pdev->dev;
四、linux i2c从设备驱动
硬件方面,I2C主设备已经集成在主芯片内,软件方面,linux也为我们提供了相应的驱动程序,位于drivers/i2c/bus下。那么接下来I2C从设备驱动就变得容易得多。既然系统加载I2C主设备驱动时已经注册了i2c_adapter和i2c_client,那么I2C从设备主要完成三大任务:
以/driver/misc/eeprom/eeprom.c为例:
static struct i2c_driver eeprom_driver = {
.driver = {
.name = "eeprom",
},
.probe = eeprom_probe,
.remove = eeprom_remove,
.id_table = eeprom_id,
.class = I2C_CLASS_DDC | I2C_CLASS_SPD,
.detect = eeprom_detect,
.address_list = normal_i2c,
};
i2c_driver 中的driver.name 不一定要和i2c_client一致,因为这只是他们配备的依据之一。id_table 是i2c_device_id结构体的一个对象,里面定义了i2c驱动对应设备的i2c地址。struct i2c_device_id里面的字符串与 I2C_BOARD_INFO里面的匹配后,xxx_led_probe也会调用,这是设备和驱动匹配的依据之二。
使用Device Tree后,驱动需要与.dts中描述的设备结点进行匹配,从而引发驱动的probe()函数执行。对于platform_driver而言,需要添加一个OF匹配表
static const struct i2c_device_id pcf8563_id[] = {
{ "pcf8563", 0 },
{ "rtc8564", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, pcf8563_id);
#ifdef CONFIG_OF
static const struct of_device_id pcf8563_of_match[] = {
{ .compatible = "nxp,pcf8563" },
{}
};
MODULE_DEVICE_TABLE(of, pcf8563_of_match);
#endif
static struct i2c_driver pcf8563_driver = {
.driver = {
.name = "rtc-pcf8563",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(pcf8563_of_match),
},
.probe = pcf8563_probe,
.id_table = pcf8563_id,
};
/* Each client has this additional data */
不过这边有一点需要提醒的是,I2C和SPI外设驱动和Device Tree中设备结点的compatible 属性还有一种弱式匹配方法,就是别名匹配。compatible 属性的组织形式为
struct eeprom_data {
struct mutex update_lock;
u8 valid; /* bitfield, bit!=0 if slice is valid */
unsigned long last_updated[8]; /* In jiffies, 8 slices */
u8 data[EEPROM_SIZE]; /* Register values */
enum eeprom_nature nature;
};
... ...
struct eeprom_data *data;
......
i2c_set_clientdata(client, data);//将设备的数据结构挂到i2c_client.dev->p->driver_data下
.............
name[0] = i2c_smbus_read_byte_data(client, 0x80);//i2c-core提供的接口,利用i2c_adapter的算法实现I2C通信
}
这部分内容建议参考http://blog.csdn.net/zclongembedded/article/details/8207022
以及http://blog.csdn.net/zclongembedded/article/details/8207722
也就是说,i2c_adapter是一个i2c总线控制器,i2c_add_driver会把i2c_driver挂到i2c总线上,并搜索总线上所有和它匹配的i2c_client,成功的话i2c_driver的probe函数就会被调用,搜索到的i2c_client会作为参数传递给probe函数。因为一个i2c_driver可能被多个i2c_client使用,因此就了解i2c_set_clientdata(client, data);调用的必要性了。就是说多个clients可以用一个driver,但是各自有自己的私有数据。
注:module_i2c_driver是一个针对i2c的宏定义,
定义位于/include/linux/i2c.h/
/**
* module_i2c_driver() - Helper macro for registering a I2C driver
* @__i2c_driver: i2c_driver struct
*
* Helper macro for I2C drivers which do not do anything special in module
* init/exit. This eliminates a lot of boilerplate. Each module may only
* use this macro once, and calling it replaces module_init() and module_exit()
*/
#define module_i2c_driver(__i2c_driver) \
module_driver(__i2c_driver, i2c_add_driver, \
i2c_del_driver)
使用module_i2c_driver(xxx_i2c_driver)
可以取代
-static int __init xxx_i2c_init(void)
-{
- return i2c_add_driver(&xxx_i2c_driver);
-}
-
-static void __exit xxx_i2c_exit(void)
-{
- i2c_del_driver(&xxx_i2c_driver);
-}
-
-
-module_init(xxx_i2c_init);
-module_exit(xxx_i2c_exit);