- 线性回归(1)
zidea
MachineLearninginMarketing感谢李宏毅《回归-案例研究》部分内容为听取李宏毅老师讲座的笔记,也融入了自己对机器学习理解,个人推荐李宏毅老师的机器学习系列课程,尤其对于初学者强烈推荐。课程设计相对其他课程要容易理解。在机器学习中算法通常分为回归和分类两种,今天我们探讨什么线性回归。以及如何设计一个线性回归模型。什么回归简单理解通过数据最终预测出来一个值。回归问题的实例就是找到
- 从零开始学Python系列课程第07课:Python的输入和输出函数
HerrFu
Python基础python开发语言学习
在程序的执行过程中,可能我们有需要与程序进行交互的地方,那么这些交互应该怎样去编写,是我们需要思考的问题,为此Python提供了输入和输出函数,以便我们和程序之间的简单交互操作。一、输入函数——input我们借助input函数,能够将我们所想的数据传入到程序中,如下例子:str_1=input()此时程序执行时便会要求我们输入内容,输入的内容会被保存到变量str_1中,另外,无论输入函数input
- 从零开始学Python系列课程第02课:Python环境搭建
HerrFu
Python基础python开发语言学习
学习一门新的编程语言,少不了安装各种各样的软件和配置各种各样的环境,为此,给学习本门课程的同学准备了一份环境安装指南,接下来请认真食用。一、安装包下载Python官网:https://www.python.org/上述界面为Python官网首页,在Downloads选项可以下载到Windows、Mac、Linux的Python安装程序或二进制文件。大家可以自行查看官网内容获取Python的安装包,
- 从零开始学Python系列课程第04课:编写并运行Python程序
HerrFu
Python基础pythonpycharm开发语言
在前几篇文章中,我们已经了解了Python语言、安装了运行和编写Python程序所必需的环境、创建了一个新的Python项目,相信大家已经迫不及待的想开始自己的Python编程之旅了。一、创建Python文件书接上文,在讲述了PyCharm如何创建项目之后,还不能直接写代码,还需要创建一个能够承载Python代码的文件,这个文件的后缀名为.py,请看下方截图,如何创建:在前面创建好的Python项
- 从零开始学Python系列课程第01课:Python认知
HerrFu
Python基础python开发语言学习
学习一门编程语言,我们首先要知道这门语言的身世,这样才能够更好的帮助我们了解和认识它!Python是由荷兰数学和计算机科学研究学会的GuidovanRossum(吉多·范罗苏姆,以下简称:吉多大爷)于1990年初设计,准备用Python作为一门叫做ABC语言的替代品。ABC语言ABC语言是NWO(荷兰科学研究组织)旗下CWI(荷兰国家数学与计算机科学研究中心)的LeoGrurts、LambertM
- 从零开始学Python系列课程第14课:Python中的循环结构(下)
HerrFu
Python基础python开发语言学习
在本篇文章中,我们对上文讲过的循环结构做少许补充,除去for-in循环和while循环,其实还存在for-else结构和while-else结构。只是这在编程语言界,Python属于独一份了,独一份循环结构还可以与else关键字一起使用的编程语言,不过这种用法哪怕在Python中也是比较小众。哪怕用到,绝大部分场景也是给到for-else结构,今天我们以for-else结构为例,为大家讲解如何使用
- 从零开始学Python系列课程第16课:Python常见容器型数据类型介绍
HerrFu
Python基础python开发语言学习
Python中有个容器的知识点非常重要,一定要认真学习。我们把可以包含其他数据的数据类型,称之为容器,我们将Python中常用的容器划分为三种:内容连续、有顺序、可以使用下标索引的一类数据容器,我们称之为序列,Python中的列表、字符串、元组都属于序列。在数学里,映射是一个术语,指两个数据集中的元素存在相互对应的关系,称为映射,Python的字典中的元素就具有这样的对应关系。既没有序列的特性,也
- 从零开始学Python系列课程第13课:Python中的循环结构(上)
HerrFu
Python基础python开发语言学习
一、循环结构的应用场景及分类我们在编写程序时,一定会遇到需要重复执行某些指令的场景。举一个简单的例子,在前面讲分支结构时以游戏通关为例,如果第一关结束时分值不够则通关失败需要重新闯关,重新闯关这就是一个重复性的动作,类似的还有很多相似场景,代入编程中就可以使用循环来解决这类问题,这就是我们今天要讲的“循环结构”。所谓循环结构,就是程序中控制某条或某些指令重复执行的结构。在Python中构造循环结构
- 从零开始学Python系列课程第15课:range 方法详解
HerrFu
Python基础python开发语言学习
在循环结构上篇讲述for-in循环时,有一个range方法的知识点没给大家讲,本篇文章我们单独给大家做一个详细讲解。range方法的作用就是根据给定的start、stop、step三个参数,生成一个包含有规律整数的容器。以下是range的语法规则:range(start,stop,step)我们对这几个参数做出解释:可以理解start为左闭区间,stop为右开区间,step为等差序列的差;rang
- 人工智能 python入门体验课_Python系列课程——人工智能篇简单入门
weixin_39536427
人工智能python入门体验课
1、基础篇——基于Python的机器学习现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(过拟合、欠拟
- 机器学习笔记03_机器学习基本概念(下)
三木今天学习了嘛
机器学习机器学习深度学习人工智能
学习视频:[中英字幕]吴恩达机器学习系列课程学习资料:https://github.com/fengdu78/Coursera-ML-AndrewNg-NotesGitHub不好用的话,我在CSDN资源区也上传了开源资料,0积分下载,期待和大家一起进步!文章目录12聚类Clustering12.1无监督学习UnsupervisedLearning12.2K-均值算法K-MeansAlgorithm
- 吴恩达《机器学习》1-4:无监督学习
不吃花椒的兔酱
机器学习机器学习学习笔记
一、无监督学习无监督学习就像你拿到一堆未分类的东西,没有标签告诉你它们是什么,然后你的任务是自己找出它们之间的关系或者分成不同的组,而不依赖于任何人给你关于这些东西的指导。以聚类为例,无监督学习算法可以将数据点分成具有相似特征的群组,而不需要提前告知每个数据点属于哪个群组。二、聚类算法将数据集中的对象分成具有相似特征或属性的组,这些组通常称为簇。参考资料:[中英字幕]吴恩达机器学习系列课程黄海广博
- 【李宏毅机器学习·学习笔记】Deep Learning General Guidance
MilkLeong
李宏毅机器学习Python机器学习机器学习深度学习学习
本节课可视为机器学习系列课程的一个前期攻略,这节课主要对MachineLearning的框架进行了简单的介绍;并以trainingdata上的loss大小为切入点,介绍了几种常见的在模型训练的过程中容易出现的情况。课程视频:Youtube:https://www.youtube.com/watch?v=WeHM2xpYQpw课程PPT:https://view.officeapps.live.co
- 机器学习比较好的视频资源
无敌三角猫
深度学习人工智能机器学习
吴恩达,经典入门课程。[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibiliwww.bilibili.com/video/BV164411b7dx?spm_id_from=333.999.0.0正在上传…重新上传取消[双语字幕]吴恩达深度学习deeplearning.ai_哔哩哔哩_bilibiliwww.bilibili.com/video/BV1FT4y1E74V?from=searc
- python网课人工智能,Python系列课程——人工智能篇简单入门
爬山小虎哥
python网课人工智能
1、基础篇——基于Python的机器学习>>>>>>现在大热、为未来计算机科学发展方向的机器学习了解多少呢?下面推荐的这个内容比较适合小白,如果数学、模型理论基础不扎实也没关系,可以掌握Python编程语言基本可以轻松学习~例如利用Python编程语言实现线性分类器、支持向量机、朴素贝叶斯等经典机器学习模型来解决诸如肿瘤良恶性预测、手写体识别、泰坦尼克号生还预测等实际问题。并就模型本身泛化力问题(
- 【经典】吴恩达——机器学习笔记001
superME1226
机器学习机器学习算法
【经典】吴恩达——机器学习笔记001机器学习(MachineLearning)笔记001学习地址:[中英字幕]吴恩达机器学习系列课程文字版参考及PPT来源:Coursera-ML-AndrewNg-Notes听从学长的建议,将吴恩达教授的DL和ML视频作为CV入门学习,本博客为个人学习笔记,旨在记录学习所得,欢迎小伙伴们一起交流学习,批评指正!第二章:【经典】吴恩达——机器学习笔记002课程总述M
- 【CV】吴恩达机器学习课程笔记第18章
Fannnnf
吴恩达机器学习课程笔记机器学习人工智能
本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片机器学习|Coursera吴恩达机器学习系列课程_bilibili目录18应用案例:照片OCR18-1问题描述与流程(pipeline)18-2滑动窗口(slidingwindows)分类器18-3获取大量数据和人工数据合成18-4上限分析:下一步要做流水线中的哪一个18应用案例:照片OCR18-1问题描述与流程(pipeline)1.找
- 吴恩达机器学习系列课程笔记——第五章:Octave教程(Octave Tutorial)
Lishier99
机器学习机器学习人工智能
提示:这章选学,可以去学python,第六节可以看看。5.1基本操作https://www.bilibili.com/video/BV164411b7dx?p=26本章学习以种编程语言:Octave语言。你能够用它来非常迅速地实现这门课中我们已经学过的,或者将要学的机器学习算法。过去我一直尝试用不同的编程语言来教授机器学习,包括C++、Java、Python、Numpy和Octave。我发现当使用
- 吴恩达机器学习系列课程笔记——第十四章:降维(Dimensionality Reduction)
Lishier99
机器学习机器学习人工智能算法学习
14.1动机一:数据压缩https://www.bilibili.com/video/BV164411b7dx?p=79这个视频,我想开始谈论第二种类型的无监督学习问题,称为降维。有几个不同的的原因使你可能想要做降维。一是数据压缩,后面我们会看了一些视频后,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。但首先,让我们谈论降维是什么。作为一种生动的
- 吴恩达机器学习系列课程笔记——第十一章:机器学习系统的设计(Machine Learning System Design)
Lishier99
机器学习机器学习人工智能算法
11.1首先要做什么https://www.bilibili.com/video/BV164411b7dx?p=65在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系
- python数据分析、整理、汇总展示_python-数据分析与展示(Numpy、matplotlib、pandas)---2...
weixin_39525118
python数据分析整理汇总展示
笔记内容整理自mooc上北京理工大学嵩天老师python系列课程数据分析与展示,本人小白一枚,如有不对,多加指正1.python自带的图像库PIL1.1常用APIImage.open()Image.fromarray()im.save()convert('L')b.astype('uint8')(这个API用于处理后的数组改变元素的数据类型,科学计算python不同于C++等编程语言,操作之后,数
- 吴恩达机器学习课程笔记:监督学习、无监督学习
Uncertainty!!
机器学习基础监督学习无监督学习
1.吴恩达机器学习课程笔记:监督学习、无监督学习吴恩达机器学习系列课程:监督学习吴恩达机器学习系列课程:无监督学习仅作为个人学习笔记,若各位大佬发现错误请指正机器学习的学习算法:监督学习、无监督学习、半监督学习(监督与无监督的结合)、强化学习监督学习与无监督学习的根本区别:监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。(例如:身高属于特征,标签是高或矮)左侧为监督学习针对
- 机器学习(正在更新)
小小怪将军!
机器学习机器学习深度学习
目录自己疑问-----容易错误的点:训练集、验证集、测试集训练集验证集测试集以下视频地址:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili第二章2.1线性回归2-2代价函数(类似误差一样)2.5-2.6梯度下降算法,梯度下降算法理解2.3线性回归的梯度下降/Batch梯度下降第四章(正规方程与梯度下降一样是为了求满足条件的(塞塔o))4.1多变量线性回归假设函数4.2多元(多变量)梯
- 机器学习 笔记(继续更新)
M有在认真学习
机器学习python
学习内容跟随“吴恩达机器学习系列课程”。目录1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multivariatelinearregression多元线性回归),它的假设函数和的迭代4.将gradien
- 吴恩达---机器学习的流程(持续更新)
M有在认真学习
机器学习回归逻辑回归
参考:吴恩达机器学习的视频视频链接:[中英字幕]吴恩达机器学习系列课程_哔哩哔哩_bilibili本文用于我自己的内容总结以及层次理解。学习流程:1.具有一个特征的学习算法(linearregression线性回归),代价函数编辑的由来,等高图2.可以最小化代价函数的梯度下降法(gradientdescent),以及对于编辑、学习率编辑、导数项的通俗解释3.具有多个变量或特征的学习算法(multi
- 机器学习算法笔记(1)——逻辑斯蒂回归Logistic处理二分类任务
念旧NiceJeo
机器学习算法笔记算法机器学习python可视化
逻辑斯蒂回归LogisticRegressor处理二分类任务一.逻辑斯蒂回归1.模型2.代价函数(损失函数)3.优化算法二.代码实现1.二维二分类2.多维二分类本系列为观看吴恩达老师的[中英字幕]吴恩达机器学习系列课程做的课堂笔记。图片来自视频截图。不得不说,看了老师的视频真的学到了很多。即使数学不好的同志们也可以看懂,真的可谓是细致入微了。一.逻辑斯蒂回归1.模型学过深度学习的同志们对这张图一定
- 【机器学习(九)】大数据集及其梯度下降算法
趴抖
机器学习算法人工智能
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P102-P105。大数据集假定你的训练集的大小m为100000000。如果你想训练一个线性回归模型或是一个逻辑回归模型。其梯度下降规则如下:当m的值为100000000时,就需要对一亿项进行求和。这是为了计算导数项以及演算单步下降。因为计算超过一亿项的代价太高了。我们容易思考:为什么不能在这一亿项中取一千个样本的子集,然后仅用
- 【机器学习(八)】神经网络进阶
趴抖
机器学习神经网络逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P50-P56。代价函数假设我们有一个与下图类似的神经网络结构,再假设我们有一个像这样的训练集,其中有m组训练样本(x(i),y(I))。用L来表示神经网络结构的总层数:我们将会考虑两种分类问题:二元分类问题这里的y只能为0或1,在这种情况下,我们会有一个输出单元即K=1。同时神经网络的输出结果h(x)会是一个实数多类别分类问题
- 【机器学习(四)】分类问题与logistic回归模型
趴抖
机器学习回归分类
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P32-P36、P38。情景引入在前面几篇文章中,我们提到了判断邮件是否为垃圾邮件的例子,以及良性与恶性肿瘤的例子。在所有的这些问题中,我们尝试预测的变量y,都是可以有两个取值的变量——0或1。我们用0来表示的这一类还可以叫做”负类“,用1来表示的这一类还可以叫做正类。现在我们要从只包含0和1两类的分类问题开始。假设陈述——lo
- 【机器学习(六)】过拟合问题及正则化
趴抖
机器学习人工智能逻辑回归
声明:本文是以吴恩达机器学习系列课程为学习对象而作的学习笔记。本文对应P39-P42。过拟合问题下面是一个用线性回归来预测房价的例子:第一种拟合没有很好地拟合训练集,称其为欠拟合。或者说,这个算法具有高偏差。第二种恰当地拟合了训练集。第三种拟合似乎很好地拟合了训练集,代价函数实际上可能非常接近于0,毕竟它通过了所有的数据点,但这是一条扭曲的,不停上下波动的曲线。事实上我们并不认为它是一个预测房价的
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio