JAVA 阻塞队列(BlockingQueue)的实际应用详解(生产者消费者&&线程池)

阻塞队列的应用——生产者消费者

传统模式

传统模式使用Lock来进行操作,需要手动加锁、解锁。
参考:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
 * 初始值为0的变量,两个线程交替操作,一个+1,一个-1,执行五轮
 * 1 线程  操作  资源类
 * 2 判断  干活  通知
 * 3 防止虚假唤醒机制
 */
public class ProdConsTradiDemo {
    public static void main(String[] args) {
        ShareData shareData = new ShareData();

        new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    shareData.increment();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "Producer").start();

        new Thread(() -> {
            for (int i = 0; i < 5; i++) {
                try {
                    shareData.decrement();
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }, "Consumer").start();

    }
}

class ShareData {
    private int number = 0;
    private Lock lock = new ReentrantLock();
    private Condition condition = lock.newCondition();

    public void increment() throws InterruptedException {
        lock.lock();
        try {
            //1 判断
            while (number != 0) {
                //等待,不能生产
                condition.await();
            }
            //2 干活
            number++;
            System.out.println(Thread.currentThread().getName() + "\t" + number);
            //3 通知唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

    public void decrement() throws InterruptedException {
        lock.lock();
        try {
            //1 判断
            while (number == 0) {
                //等待,不能生产
                condition.await();
            }
            //2 干活
            number--;
            System.out.println(Thread.currentThread().getName() + "\t" + number);
            //3 通知唤醒
            condition.signalAll();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }
}

阻塞队列模式

使用阻塞队列就不需要手动加锁了。
参考:

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

public class ProdConsBlockQueueDemo {
    public static void main(String[] args) {
        MyResource myResource = new MyResource(new ArrayBlockingQueue<>(10));
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName() + "\t生产线程启动");
            try {
                myResource.myProd();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "prod").start();

        new Thread(() -> {
            System.out.println(Thread.currentThread().getName() + "\t消费线程启动");
            try {
                myResource.myCons();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }, "cons").start();

        try {
            TimeUnit.SECONDS.sleep(5);
        } catch (Exception e) {
            e.printStackTrace();
        }

        System.out.println("5秒钟后,叫停");
        myResource.stop();
    }
}

class MyResource {
    private volatile boolean FLAG = true; //默认开启,进行生产+消费
    private AtomicInteger atomicInteger = new AtomicInteger();

    private BlockingQueue<String> blockingQueue;

    public MyResource(BlockingQueue<String> blockingQueue) {
        this.blockingQueue = blockingQueue;
    }

    public void myProd() throws Exception {
        String data = null;
        boolean retValue;
        while (FLAG) {
            data = atomicInteger.incrementAndGet() + "";//++i
            retValue = blockingQueue.offer(data, 2L, TimeUnit.SECONDS);
            if (retValue) {
                System.out.println(Thread.currentThread().getName() + "\t" + "插入队列" + data + "成功");
            } else {
                System.out.println(Thread.currentThread().getName() + "\t" + "插入队列" + data + "失败");
            }
            TimeUnit.SECONDS.sleep(1);
        }
        System.out.println(Thread.currentThread().getName() + "\tFLAG==false,停止生产");
    }

    public void myCons() throws Exception {
        String res;
        while (FLAG) {
            res = blockingQueue.poll(2L, TimeUnit.SECONDS);
            if (null == res || res.equalsIgnoreCase("")) {
                FLAG = false;
                System.out.println(Thread.currentThread().getName() + "\t超过2秒钟没有消费,退出消费");
                return;
            }
            System.out.println(Thread.currentThread().getName() + "\t消费队列" + res + "成功");
        }
    }

    public void stop() {
        this.FLAG = false;
    }
}

阻塞队列的应用——线程池

线程池基本概念

概念:线程池主要是控制运行线程的数量,将待处理任务放到等待队列,然后创建线程执行这些任务。如果超过了最大线程数,则等待。

优点

  1. 线程复用:不用一直new新线程,重复利用已经创建的线程来降低线程的创建和销毁开销,节省系统资源。
  2. 提高响应速度:当任务达到时,不用创建新的线程,直接利用线程池的线程。
  3. 管理线程:可以控制最大并发数,控制线程的创建等。

体系ExecutorExecutorServiceAbstractExecutorServiceThreadPoolExecutorThreadPoolExecutor是线程池创建的核心类。类似ArraysCollections工具类,Executor也有自己的工具类Executors

线程池三种常用创建方式

newFixedThreadPool:使用LinkedBlockingQueue实现,定长线程池。

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}

newSingleThreadExecutor:使用LinkedBlockingQueue实现,一池只有一个线程。

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
}

newCachedThreadPool:使用SynchronousQueue实现,变长线程池。

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                 60L, TimeUnit.SECONDS,
                                 new SynchronousQueue<Runnable>());
}

线程池创建的七个参数

参数 意义
corePoolSize 线程池常驻核心线程数
maximumPoolSize 能够容纳的最大线程数
keepAliveTime 空闲线程存活时间
unit 存活时间单位
workQueue 存放提交但未执行任务的队列
threadFactory 创建线程的工厂类
handler 等待队列满后的拒绝策略

理解:线程池的创建参数,就像一个银行

corePoolSize就像银行的“当值窗口“,比如今天有2位柜员在受理客户请求(任务)。如果超过2个客户,那么新的客户就会在等候区(等待队列workQueue)等待。当等候区也满了,这个时候就要开启“加班窗口”,让其它3位柜员来加班,此时达到最大窗口maximumPoolSize,为5个。如果开启了所有窗口,等候区依然满员,此时就应该启动”拒绝策略handler,告诉不断涌入的客户,叫他们不要进入,已经爆满了。由于不再涌入新客户,办完事的客户增多,窗口开始空闲,这个时候就通过keepAlivetTime将多余的3个”加班窗口“取消,恢复到2个”当值窗口“。

线程池底层原理

原理图:上面银行的例子,实际上就是线程池的工作原理。

JAVA 阻塞队列(BlockingQueue)的实际应用详解(生产者消费者&&线程池)_第1张图片

流程图

JAVA 阻塞队列(BlockingQueue)的实际应用详解(生产者消费者&&线程池)_第2张图片

新任务到达→

如果正在运行的线程数小于corePoolSize,创建核心线程;大于等于corePoolSize,放入等待队列。

如果等待队列已满,但正在运行的线程数小于maximumPoolSize,创建非核心线程;大于等于maximumPoolSize,启动拒绝策略。

当一个线程无事可做一段时间keepAliveTime后,如果正在运行的线程数大于corePoolSize,则关闭非核心线程。

线程池的拒绝策略

当等待队列满时,且达到最大线程数,再有新任务到来,就需要启动拒绝策略。JDK提供了四种拒绝策略,分别是。

  1. AbortPolicy:默认的策略,直接抛出RejectedExecutionException异常,阻止系统正常运行。
  2. CallerRunsPolicy:既不会抛出异常,也不会终止任务,而是将任务返回给调用者。
  3. DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交任务。
  4. DiscardPolicy:直接丢弃任务,不做任何处理。

实际生产使用哪一个线程池?

单一、可变、定长都不用!原因就是FixedThreadPoolSingleThreadExecutor底层都是用LinkedBlockingQueue实现的,这个队列最大长度为Integer.MAX_VALUE,显然会导致OOM。所以实际生产一般自己通过ThreadPoolExecutor的7个参数,自定义线程池。

ExecutorService threadPool=new ThreadPoolExecutor(2,5,
                        1L,TimeUnit.SECONDS,
                        new LinkedBlockingQueue<>(3),
                        Executors.defaultThreadFactory(),
                        new ThreadPoolExecutor.AbortPolicy());

自定义线程池参数选择

对于CPU密集型任务,最大线程数是CPU线程数+1。对于IO密集型任务,尽量多配点,可以是CPU线程数*2,或者CPU线程数/(1-阻塞系数)。

你可能感兴趣的:(java)