不管想要做些什么,配置环境总是最让人头疼的部分……
看了半天的Theano,终于打算跑跑程序瞧瞧了……
谁知道新的一轮配置才刚刚开始……
提示:懒得看我那么多废话的可以直接点这里跳到配置方法
# 尝试运行
$ python example.py
# 报错文本
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain`
WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
# 尝试 Step1 (那装个mingw试试?)
$ conda install mingw libpython
# 反馈文本
Fetching package metadata .........
Solving package specifications: ..........
Package plan for installation in environment C:\Program Files\Anaconda2:
The following packages will be downloaded:
package | build
---------------------------|-----------------
conda-env-2.6.0 | 0 498 B
mingw-4.7 | 1 56.1 MB
libpython-2.0 | py27_0 30 KB
requests-2.12.4 | py27_0 755 KB
pyopenssl-16.2.0 | py27_0 68 KB
conda-4.3.8 | py27_0 522 KB
------------------------------------------------------------
Total: 57.4 MB
The following NEW packages will be INSTALLED:
conda-env: 2.6.0-0 (copy)
libpython: 2.0-py27_0 (copy)
mingw: 4.7-1 (copy)
The following packages will be UPDATED:
conda: 4.2.9-py27_0 --> 4.3.8-py27_0 (copy)
pyopenssl: 16.0.0-py27_0 --> 16.2.0-py27_0 (copy)
requests: 2.11.1-py27_0 --> 2.12.4-py27_0 (copy)
# 报错文本
CondaIOError: IO error: Missing write permissions in: C:\Program Files\Anaconda2
#
# You don't appear to have the necessary permissions to install packages
# into the install area 'C:\Program Files\Anaconda2'.
# However you can clone this environment into your home directory and
# then make changes to it.
# This may be done using the command:
#
# $ conda create -n my_root --clone=C:\Program Files\Anaconda2
# 尝试 Step2(那按照提示试试?)
$ conda create -n my_root --clone=C:\Program Files\Anaconda2
# 报错文本
TooManyArgumentsError: Too many arguments: did not expect any arguments for --clone. Got 1 argument (Files\Anaconda2) and expected 0.
# 尝试 Step3(是不是应该框起来?)
$ conda create -n my_root --clone="C:\Program Files\Anaconda2"
# 反馈文本
Source: C:\Program Files\Anaconda2
Destination: C:\Users\Work\.conda\envs\my_root
The following packages cannot be cloned out of the root environment:
- conda-4.2.9-py27_0
- conda-build-2.0.2-py27_0
Packages: 181
Files: 22
WARNING conda.lock:touch(53): Failed to create lock, do not run conda in parallel processes [errno 13]
An unexpected error has occurred.
Please consider posting the following information to the
conda GitHub issue tracker at:
https://github.com/conda/conda/issues
Current conda install:
platform : win-64
conda version : 4.2.9
conda is private : False
conda-env version : 4.2.9
conda-build version : 2.0.2
python version : 2.7.12.final.0
requests version : 2.11.1
root environment : C:\Program Files\Anaconda2 (read only)
default environment : C:\Program Files\Anaconda2
envs directories : C:\Users\Work\.conda\envs
C:\Program Files\Anaconda2\envs
package cache : C:\Users\Work\.conda\envs\.pkgs
C:\Program Files\Anaconda2\pkgs
channel URLs : https://repo.continuum.io/pkgs/free/win-64/
https://repo.continuum.io/pkgs/free/noarch/
https://repo.continuum.io/pkgs/pro/win-64/
https://repo.continuum.io/pkgs/pro/noarch/
https://repo.continuum.io/pkgs/msys2/win-64/
https://repo.continuum.io/pkgs/msys2/noarch/
config file : None
offline mode : False
` C:\Program Files\Anaconda2\Scripts\conda-script.py create -n my_root --clone=C:\Program Files\Anaconda2`
Traceback (most recent call last):
File "C:\Program Files\Anaconda2\lib\site-packages\conda\exceptions.py", line 473, in conda_exception_handler
return_value = func(*args, **kwargs)
......
makedirs(head, mode)
File "C:\Program Files\Anaconda2\lib\os.py", line 157, in makedirs
mkdir(name, mode)
WindowsError: [Error 5] : u'C:\\Program Files\\Anaconda2\\pkgs\\menuinst-1.4.1-py27_0.tmp'
# 尝试 Step4 (哦路径有个空格,会不会是要这样加双引号?)
conda create -n my_root --clone=C:\"Program Files"\Anaconda2
# 报错文本
CondaValueError: Value error: prefix already exists: C:\Users\Work\.conda\envs\my_root
# 纠结的去碎觉了
所以说来说去还是因为没有权限对吧……
那我就把这文件夹的权限开放好了:
# 好的,正常了
$ conda install mingw libpython
Fetching package metadata .........
Solving package specifications: ..........
Package plan for installation in environment C:\Program Files\Anaconda2:
The following packages will be downloaded:
package | build
---------------------------|-----------------
mingw-4.7 | 1 56.1 MB
libpython-2.0 | py27_0 30 KB
requests-2.12.4 | py27_0 755 KB
pyopenssl-16.2.0 | py27_0 68 KB
conda-4.3.9 | py27_0 525 KB
------------------------------------------------------------
Total: 57.4 MB
The following NEW packages will be INSTALLED:
conda-env: 2.6.0-0
libpython: 2.0-py27_0
mingw: 4.7-1
The following packages will be UPDATED:
conda: 4.2.9-py27_0 --> 4.3.9-py27_0
pyopenssl: 16.0.0-py27_0 --> 16.2.0-py27_0
requests: 2.11.1-py27_0 --> 2.12.4-py27_0
Proceed ([y]/n)?
# 感动QAQ
Fetching packages ...
mingw-4.7-1.ta 100% |###############################| Time: 0:06:54 141.86 kB/s
libpython-2.0- 100% |###############################| Time: 0:00:00 124.08 kB/s
requests-2.12. 100% |###############################| Time: 0:00:12 64.36 kB/s
pyopenssl-16.2 100% |###############################| Time: 0:00:00 161.22 kB/s
conda-4.3.9-py 100% |###############################| Time: 0:00:04 109.79 kB/s
Extracting packages ...
[ COMPLETE ]|##################################################| 100%
Unlinking packages ...
[ COMPLETE ]|##################################################| 100%
Linking packages ...
[ COMPLETE ]|##################################################| 100%
既然知道怎么用conda装东西了,回到之前遇到的问题:
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain`
# 太好了,终于成功啦QAQ
$ conda install m2w64-toolchain
Fetching package metadata ...........
Solving package specifications: .
Package plan for installation in environment C:\Program Files\Anaconda2:
The following NEW packages will be INSTALLED:
m2w64-binutils: 2.25.1-5
m2w64-bzip2: 1.0.6-6
m2w64-crt-git: 5.0.0.4636.2595836-2
m2w64-gcc: 5.3.0-6
m2w64-gcc-ada: 5.3.0-6
m2w64-gcc-fortran: 5.3.0-6
m2w64-gcc-libgfortran: 5.3.0-6
m2w64-gcc-libs: 5.3.0-7
m2w64-gcc-libs-core: 5.3.0-7
m2w64-gcc-objc: 5.3.0-6
m2w64-gmp: 6.1.0-2
m2w64-headers-git: 5.0.0.4636.c0ad18a-2
m2w64-isl: 0.16.1-2
m2w64-libiconv: 1.14-6
m2w64-libmangle-git: 5.0.0.4509.2e5a9a2-2
m2w64-libwinpthread-git: 5.0.0.4634.697f757-2
m2w64-make: 4.1.2351.a80a8b8-2
m2w64-mpc: 1.0.3-3
m2w64-mpfr: 3.1.4-4
m2w64-pkg-config: 0.29.1-2
m2w64-toolchain: 5.3.0-7
m2w64-tools-git: 5.0.0.4592.90b8472-2
m2w64-windows-default-manifest: 6.4-3
m2w64-winpthreads-git: 5.0.0.4634.697f757-2
m2w64-zlib: 1.2.8-10
msys2-conda-epoch: 20160418-1
The following packages will be UPDATED:
anaconda: 4.2.0-np111py27_0 --> custom-py27_0
Proceed ([y]/n)? y
msys2-conda-ep 100% |###############################| Time: 0:00:00 187.73 kB/s
m2w64-gmp-6.1. 100% |###############################| Time: 0:00:03 214.94 kB/s
m2w64-gmp-6.1. 100% |###############################| Time: 0:00:09 76.21 kB/s
m2w64-gmp-6.1. 100% |###############################| Time: 0:00:08 79.34 kB/s
m2w64-headers- 100% |###############################| Time: 0:01:21 72.44 kB/s
m2w64-isl-0.16 100% |###############################| Time: 0:00:09 72.56 kB/s
m2w64-libiconv 100% |###############################| Time: 0:00:33 45.89 kB/s
m2w64-libmangl 100% |###############################| Time: 0:00:00 53.69 kB/s
m2w64-libwinpt 100% |###############################| Time: 0:00:00 47.28 kB/s
m2w64-make-4.1 100% |###############################| Time: 0:00:02 48.44 kB/s
m2w64-windows- 100% |###############################| Time: 0:00:00 434.62 kB/s
anaconda-custo 100% |###############################| Time: 0:00:00 59.71 kB/s
m2w64-crt-git- 100% |###############################| Time: 0:00:28 122.83 kB/s
m2w64-gcc-libs 100% |###############################| Time: 0:00:01 112.73 kB/s
m2w64-mpfr-3.1 100% |###############################| Time: 0:00:03 92.55 kB/s
m2w64-pkg-conf 100% |###############################| Time: 0:00:06 71.01 kB/s
m2w64-gcc-libg 100% |###############################| Time: 0:00:07 43.77 kB/s
m2w64-mpc-1.0. 100% |###############################| Time: 0:00:01 41.31 kB/s
m2w64-winpthre 100% |###############################| Time: 0:00:00 47.91 kB/s
m2w64-gcc-libs 100% |###############################| Time: 0:00:07 73.92 kB/s
m2w64-bzip2-1. 100% |###############################| Time: 0:00:00 113.92 kB/s
m2w64-tools-gi 100% |###############################| Time: 0:00:05 58.54 kB/s
m2w64-zlib-1.2 100% |###############################| Time: 0:00:07 28.71 kB/s
m2w64-binutils 100% |###############################| Time: 0:07:49 99.05 kB/s
m2w64-gcc-5.3. 100% |###############################| Time: 0:11:21 63.30 kB/s
m2w64-gcc-5.3. 100% |###############################| Time: 0:11:25 62.89 kB/s
m2w64-gcc-ada- 100% |###############################| Time: 0:11:35 50.55 kB/s
m2w64-gcc-fort 100% |###############################| Time: 0:03:51 46.45 kB/s
m2w64-gcc-objc 100% |###############################| Time: 0:05:56 44.59 kB/s
m2w64-toolchai 100% |###############################| Time: 0:00:00 3.57 kB/s
# 开心的import试试看~
>>> import theano
Traceback (most recent call last):
File "" , line 1, in
File "C:\Python27\lib\site-packages\theano\__init__.py", line 66, in
from theano.compile import (
File "C:\Python27\lib\site-packages\theano\compile\__init__.py", line 10, in
from theano.compile.function_module import *
File "C:\Python27\lib\site-packages\theano\compile\function_module.py", line 18, in
from theano import config, gof
ImportError: cannot import name gof
# 。。。。。。
小标题说明一切……
所以我装了半天的mingw还是被认作是cygwin是么……
(绝望脸)反正我也只是为了练习Theano的语法,不纠结那么多用起来再说……
于是……投奔了实验室的ssh远程CentOS操作,虽然只要两三分钟不输入指令就会断线……但好歹能用啊……
因为看到有人评论了这篇文章,才突然想起来,oh,这里有个坑忘了填,现在在这里补充一下。
想了想不如就直接写个从零开始配置Theano的流程 (Thx for @caoyixuan)
此处使用Anaconda平台来为我们的安装进行辅助:
Anaconda
: download package from https://anaconda.org/conda install mingw libpython
pip install theano
.theanorc.txt
in your user folder: Anaconda
: download package from https://anaconda.org/pip install theano
.theanor file
in your user folder: 开工开工…… 开始看基础
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import theano
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain`
WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
>>> import theano.tensor as T
>>> from theano import function, pp, printing, scan, shared
>>> import numpy as np
>>>
>>>
>>> '''Define a function'''
'Define a function'
>>> # 1. theano function
... x, y, a, b = T.fscalars('x', 'y', 'a', 'b')
>>> a = x + y
>>> b = x - y
>>> f_add = theano.function(inputs=[x, y], outputs=a)
>>> f_add_minus = theano.function(inputs=[x, y], outputs=[a, b])
>>>
>>> x1 = 10.
>>> y1 = 1.
>>> a1 = f_add(x1, y1)
>>> a2, b2 = f_add_minus(x1, y1)
>>> print a1, a2, b2
11.0 11.0 9.0
>>>
>>> # 2. python function
... def f_add(x, y):
... a = x + y
... return a
...
>>> def f_add_minus(x, y):
... a = x + y
... b = x - y
... return a, b
...
>>> x1 = 10.
>>> y1 = 1.
>>> a1 = f_add(x1, y1)
>>> a2, b2 = f_add_minus(x1, y1)
>>> print a1, a2, b2
11.0 11.0 9.0
>>>
>>>
>>>
>>> ''' Derivatives '''
' Derivatives '
>>> # Derivative
... x = T.scalar('x', dtype='float32')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> f = theano.function([x], gy)
>>> print f(4)
8.0
>>>
>>> # partial derivative
... x = T.scalar('x', dtype='float32')
>>> a = T.scalar('a', dtype='float32')
>>> y = x * a
>>> gy = T.grad(y, [x, a])
>>> f = theano.function([x, a], gy)
>>> print f(4, 3)
[array(3.0, dtype=float32), array(4.0, dtype=float32)]
>>>
>>>
>>> ''' Debugging tricks '''
' Debugging tricks '
>>> x = T.scalar('x',dtype='float32')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> f = function([x], gy)
>>>
>>> # using pp
... pp(gy) # before optimization
'((fill((x ** TensorConstant{2}), TensorConstant{1.0}) * TensorConstant{2}) * (x ** (TensorConstant{2} - TensorConstant{1})))'
>>> pp(f.maker.fgraph.outputs[0]) # after optimization
'(TensorConstant{2.0} * x)'
>>>
>>> # using printing.debugprinting
... printing.debugprint(gy) # before optimization
Elemwise{mul} [id A] ''
|Elemwise{mul} [id B] ''
| |Elemwise{second,no_inplace} [id C] ''
| | |Elemwise{pow,no_inplace} [id D] ''
| | | |x [id E]
| | | |TensorConstant{2} [id F]
| | |TensorConstant{1.0} [id G]
| |TensorConstant{2} [id F]
|Elemwise{pow} [id H] ''
|x [id E]
|Elemwise{sub} [id I] ''
|TensorConstant{2} [id F]
|InplaceDimShuffle{} [id J] ''
|TensorConstant{1} [id K]
>>> printing.debugprint(f.maker.fgraph.outputs[0]) # after optimization
Elemwise{mul,no_inplace} [id A] ''
|TensorConstant{2.0} [id B]
|x [id C]
>>>
>>> # printing.Print
... # recall that functions defined before do not print internal variables
... x = T.scalar('x',dtype='float32')
>>> xp2 = x + 2
>>> xp2_printed = printing.Print('this is xp2:')(xp2)
>>> xp2m2 = xp2_printed * 2
>>> f = function([x], xp2m2)
>>> f(20)
this is xp2: __str__ = 22.0
array(44.0, dtype=float32)
>>>
>>> # try to make this work
... x = T.scalar('x',dtype='float32')
>>> y = x ** 2
>>> yprint = printing.Print('this is y:')(y)
>>> gy = T.grad(yprint, x)
>>> f = function([x], gy)
>>> # alternatively:
... # p = printing.Print('y')
... # yprint = p(y)
...
>>>
>>> ''' shared variable '''
' shared variable '
>>> state = shared(0.)
>>> inc = T.iscalar('inc')
>>> accumulator = function([inc], state, updates=[(state, state+inc)])
>>> print state.get_value()
0.0
>>> z = accumulator(10)
>>> print z
0.0
>>> print state.get_value()
10.0
>>>
>>>
>>> ''' Loop '''
' Loop '
>>> # python for loop
... import numpy
>>> A = numpy.array([1, 2], dtype='float32')
>>> k = 5
>>> result = [numpy.array([1,1])]
>>> def mul(a, b): return a*b
...
>>> for i in range(k):
... result.append(mul(result[-1], A))
...
>>> print result[-1]
[ 1. 32.]
>>>
>>> # theano scan
... k = T.scalar("k", dtype='int32')
>>> A = T.vector("A", dtype='float32')
>>> def mul(a, b): return a*b
...
>>> result, updates = theano.scan(
... fn=mul,
... outputs_info=T.ones_like(A),
... non_sequences=A,
... n_steps=k)
>>>
>>> power = theano.function(
... inputs=[A,k],
... outputs=result[-1],
... updates=updates)
>>>
>>> A_val = numpy.array([1, 2], dtype='float32')
>>> k_val = 5
>>> r = power(A_val, 5)
>>> print r
[ 1. 32.]
>>>
>>>
>>> # calculate polynomial
... # that is, a0 * x^0 + a1 * x^1 + a2 * x^2 + ... + an * x^n
... coefficients = theano.tensor.vector("coefficients", dtype='float32')
>>> x = T.scalar("x", dtype='float32')
>>>
>>> max_coefficients_supported = 10000
>>>
>>> def cumulative_poly(coeff, power, prior_sum, x):
... return prior_sum + coeff * (x ** power)
...
>>> # Generate the components of the polynomial
... zero = np.asarray(0., dtype='float32')
>>> full_range=theano.tensor.arange(max_coefficients_supported, dtype='float32')
>>> results, updates = theano.scan(fn=cumulative_poly,
... outputs_info=T.as_tensor_variable(zero),
... sequences=[coefficients, full_range],
... non_sequences=x)
>>>
>>> polynomial = results[-1]
>>> calculate_polynomial = theano.function(inputs=[coefficients, x],
... outputs=polynomial)
>>>
>>> test_coeff = np.asarray([1, 0, 2], dtype=np.float32)
>>> print(calculate_polynomial(test_coeff, 3))
19.0