LeetCode Ugly Number、Ugly Number II、Happy Number、Add Digits

Write a program to check whether a given number is an ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.

Note:

  1. 1 is typically treated as an ugly number.
  2. Input is within the 32-bit signed integer range.
class Solution {
public:
    bool isUgly(int num) {
        if(num<=0) return false;
        if(num==1) return true;
        int temp=num;
        int prime[3]={2,3,5};
        for(int i=0;i<3;i++)
        {
            while(num%prime[i]==0)
                num/=prime[i];
        }
        if(num==1) return true; 
        return false;
    }
};

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note that 1 is typically treated as an ugly number, and n does not exceed 1690.

Credits:

Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

class Solution {
public:
    int nthUglyNumber(int n) {
        if(n<=6) return n;
        vectorv(n+1);
        v[1]=1;
        int t2=1,t3=1,t5=1;
        for(int i=2;i<=n;i++)
        {
            v[i]=min(v[t2]*2,min(v[t3]*3,v[t5]*5));
            if(v[i]==v[t2]*2) t2++;
            if(v[i]==v[t3]*3) t3++;
            if(v[i]==v[t5]*5) t5++;
        }
        return v[n];
    }
};

Write an algorithm to determine if a number is "happy".

A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.

Example: 19 is a happy number

  • 12 + 92 = 82
  • 82 + 22 = 68
  • 62 + 82 = 100
  • 12 + 02 + 02 = 1

证明:

判断某个数是否是开心数,很容易想到:如果各位上数的平方和到达1前出现循环,则该数必定不是开心数,因为它将无限循环。
因此,只要我们能发现循环在出现1之前,这个数一定不是开心数。
但是还需要证明:不开心数是不是一定存在循环节?不然与上述结论相悖,因为可能存在不开心数是没有循环节的。

不开心数是一定存在循环节的。一个n位的数,n个位都是9的情况,则平方和的区间为[1,n*pow(9,2)];如果平方和在这个区间都只出现了一次,那么下一次将导致重复,所以一定存在循环节。

该题运用到了Floyd循环侦查判断的特点。

class Solution {    
public:
    bool isHappy(int n) {
        int a=n,b=n;
        do{
            a=work(a);
            b=work(b);
            b=work(b);
            if(b==1) return true;
        }while(a!=b);
        if(a==1) return true;
        else return false;
    }
private:
    int work(int n)
    {
        int res=0;
        while(n)
        {
            res+=(n%10)*(n%10);
            n/=10;
        }
        return res;
    }
};

Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.

For example:

Given num = 38, the process is like: 3 + 8 = 111 + 1 = 2. Since 2 has only one digit, return it.

Follow up:
Could you do it without any loop/recursion in O(1) runtime?

存在公式:https://en.wikipedia.org/wiki/Digital_root#Congruence_formula
写出前十几个数后将会发现规律:
INPUT     0 1 2 3 4 5 6 7 8 9 10 11 12 13……
OUTPUT 0 1 2 3 4 5 6 7 8 9 1 2 3 4……

class Solution {
public:
    int addDigits(int num) {
        return 1+(num-1)%9;
    }
};

你可能感兴趣的:(算法编程题,leetcode)