TensorFlow自动求导原理

原理:

TensorFlow使用的求导方法称为自动微分(Automatic Differentiation),它既不是符号求导也不是数值求导,而类似于将两者结合的产物。最基本的原理就是链式法则,关键思想是在基本操作(op)的水平上应用符号求导,并保持中间结果(grad)。基本操作的符号求导定义在\tensorflow\python\ops\math_grad.py文件中,这个文件中的所有函数都用RegisterGradient装饰器包装了起来,这些函数都接受两个参数op和grad,参数op是操作,第二个参数是grad是之前的梯度


链式求导代码:

举个例子:



参考:

Automatic differentiation in machine learning: a survey. https://arxiv.org/abs/1502.05767

你可能感兴趣的:(笔记)