- yolov5 pt->onnx->om yolov5模型转onnx转om模型转换
qq_43650438
笔记深度学习tensorflow人工智能
yolov5pt->onnx->omyolov5-6.1版本models/yolo.pyDetect函数修改classDetect(nn.Module):defforward(self,x):z=[]#inferenceoutputforiinrange(self.nl):x[i]=self.m[i](x[i])#convbs,_,ny,nx=x[i].shape#x(bs,255,20,20)t
- Flutter:动态表单(在不确定字段的情况下,生成动态表单)
sunly_
Flutterflutterjava前端
关于数据模型:模型就是一种规范约束,便于维护管理,在不确定表单内会出现什么数据时,就没有模型一说。这时就要用到动态表单(根据接口返回的字段,生成动态表单)1、观察数据格式,定义模型modelData:[{id:1,name:'模型一',ctaVal:{"first_usdt":{"val":"10","title":"首仓金额","unit":"usdt","read":"0"},}},{id:2
- 微调alpaca-lora遇到的一些问题
自学AI的鲨鱼儿
#训练个人笔记深度学习LLM
目录一、环境简介二、混合精度训练Tensor相互计算会报错三、推理加载lora报错:SafetensorError:Errorwhiledeserializingheader:InvalidHeaderDeserialization四、peft(版本0.9.0)save_pretrained不保存adapter_model.bin五、一些代码注释六、问题问答6.1、model已经使用了load_i
- MinerU magic-pdf 安装, pdf 转 markdown
gold2008
pdfmagic-pdfminerU
pipinstall-U"magic-pdf[full]"--extra-index-urlhttps://wheels.myhloli.compipinstallhuggingface_hubwgethttps://github.com/opendatalab/MinerU/raw/master/scripts/download_models_hf.py-Odownload_models_hf.
- FunASR服务器部署(CPU+GPU)
之群害马
服务器eureka运维
自行下载funasr-cpu/gpu和asrmodel-deploy-cpu/gpu压缩包,官方都有cpu版运行:cd/home/user/data/AIModels/FunASR_docker/deploy_resourcessudodockerload-ifunasr-runtime-sdk-cpu-0.4.4_w_models_v0.2.1.tarcdasrmodel-deploy-cpus
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- huggingface/pytorch-image-models
GarryLau
ML&DLpytorchpythonhuggingface
huggingface/pytorch-image-models1.使用技巧1.1.训练指令单卡:pythontrain.py--pretrained--input-size3224224--mean000--std111--batch-size128--validation-batch-size128--color-jitter-prob0.2--grayscale-prob0.2--gauss
- SQLAlchemy中常用的查询方法[示例学习]
铁松溜达py
数据库
SQLAlchemy是一个强大的PythonORM(对象关系映射)工具,它提供了多种方法来执行数据库查询操作。以下是SQLAlchemy中常用的查询方法的总结:session.query():使用session.query(Model)来创建一个查询对象,其中Model是你要查询的数据库模型类。filter():在查询对象上使用filter()方法可以添加过滤条件,例如filter(Model.c
- 深入解析LangChain4j中的ChatLanguageModel API:从基础到高级应用
泰山AI
精品专栏microsoftlangchain4jjavaai
聊天与语言模型|LangChain4j注意本页描述的是低级别的LLMAPI。有关高级LLMAPI,请参见AIServices。支持的所有LLMProviderStreamingTools(sync/streaming)JSONSchemaJSONModeSupportedModalities(Input)ObservabilityLocalDeploymentSupportsNativeImage
- 用 Python 撸一个 Web 服务器-第7章:重构——更好的组织代码
pythonweb
通过前几章的学习,我们完成了TodoList程序的todo管理部分,实现了对todo的增、删、改、查基本操作,这也是几乎所有Web程序都具备的功能。我们当然可以按照目前的思路继续来实现用户管理部分,在models.py中编写用户相关的模型,在templates/目录下新建用户相关HTML,在controllers.py中编写用户相关的视图函数。但是,随着新功能的加入,把不同功能的代码都写在相同的文
- 大模型应用层的创业挑战
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大模型应用层的创业挑战关键词:大模型、应用层、创业、挑战、算法、架构、数据、资源、合作、盈利模型1.背景介绍随着计算能力和数据量的指数级增长,大模型(LargeModels)已经成为人工智能领域的关键驱动因素。大模型的应用从语言模型扩展到图像、视频和音频领域,为各行各业带来了颠覆性的创新。然而,构建和部署大模型的成本高昂,对计算资源和数据的需求也日益增加。本文将探讨大模型应用层面的创业挑战,并提供
- NoSQL数据库-体系框架
iamphp
系统架构设计师nosql数据库
NoSQL整体框架分为4层,由下至上分为数据持久层(DataPersistence)、数据分布层(DataDistributionModel)、数据逻辑模型层(DataLogicalModel)和接口层(Interface),层次之间相辅相成,协调工作。(1)数据持久层定义了数据的存储形式,主要包括基于内存、硬盘、内存和硬盘接口、订制可插拔4种形式。基于内存形式的数据存取速度最快,但可能会造成数据
- 【带你 langchain 双排系列教程】1. langchian 基本架构与环境配置(siliconFlow Deepseek接入)
夜里慢慢行456
langchain
LangChain是一个用于构建和部署大模型应用的框架,涵盖了从语言模型(LLM)到检索增强生成(RAG)、OpenAI集成以及智能体(Agent)的全套工具链。以下是一个简要的LangChain大模型全套教程,帮助你快速上手。核心内容:LangChain六大模块详解:模型(Models)、提示词(Prompts)、链(Chains)、索引(Indexes)、智能体(Agents)、内存(Memo
- 【目标检测】多模态航空目标检测:A SIMPLE AERIAL DETECTION BASELINE OF MULTIMODAL LANGUAGE MODELS
慕容紫英问情
目标检测目标检测人工智能计算机视觉
阅读并理解一篇论文:ASIMPLEAERIALDETECTIONBASELINEOFMULTIMODALLANGUAGEMODELS该文首次提出了一种将多模态语言模型应用于航空检测的简单基线方法,名为LMMRotate。贡献:具体而言,首先引入一种归一化方法,将检测输出转换为文本输出,以适配多模态语言模型框架。接着,提出一种评估方法,确保多模态语言模型与传统目标检测模型之间能够进行公平比较。通过微
- Dify rerank model is deprecated in knowledge base
人工智能
这是可优化的细节。这里过时的提示倾向于说工作空间有一个默认的重新排名模型,但在执行一些前端逻辑后我们发现当前的重新排名模型是空的或未定义的,因此这个当前模型已过时。但这里默认模型实际上是一个所有字段都是空字符串的模型结构:{"provider":"","model":""}在这种情况下,缺省模型实际上是空的且无效。因此,在这里我们不会显示过时标志,而是更有可能告诉用户为工作区配置至少一个重排序模型
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- Spring MVC 的核心以及执行流程
小马不敲代码
JAVA相关框架springmvcjava
SpringMVC的核心SpringMVC是Spring框架中的一个重要模块,它采用了经典的MVC(Model-View-Controller)设计模式。MVC是一种软件架构的思想,它将软件按照模型(Model)、视图(View)和控制器(Controller)三个核心组件来划分,以提高应用程序的可维护性、可测试性和可扩展性。•模型(Model):表示应用程序中的数据和业务逻辑。在SpringMV
- 模型/视图编程
潦潦
Qtqt开发语言
1.MVC包含模型(Model表示数据)、视图(View用户界面)、控制器(Controller界面对用户输入的反应方式)三部分,Qt中还引入了委托(Delegate,又称代理)来对用户输入进行灵活处理,使用它可以定制数据的渲染和编辑方式。QAbstractItemModel是模型的抽象基类TheQAbstractItemModelclassprovidestheabstractinterface
- Qt - MVC模型/视图编程
骆驼胡杨
Qtqt
MVC模型/视图编程Qt中的模型/视图架构用来实现大量的数据存储、处理及显示。MVC(Model-View-Controller)包括了3个组件:模型(Model)是应用对象,用来表示数据;视图(View)是模型的用户界面,用来显示数据;控制(Controller)定义了用户界面对用户输入的反应方式。委托(Delegate)用于定制数据的渲染和编辑方式。1.模型所有的模型都基于QAbstractI
- QtCreator 模块/视图编程( 一) 模型类,自定义模型QStringListModel,QStandardItemModel,QFileSystemModel,QSqlQueryModel,
psujtfc
QtQtCreatorQtCreator模块视图模型类自定义模型
1模型/视图架构1.1模型所有的模型都是基于QAbstractItemModel类,这个类定义了一个接口,可以供视图和委托来访问数据。Qt提供的现成模型:QStringListModel:用来存储一个简单的QString项目列表QStandardItemModel:管理复杂的树型结构数据项,每一个数据项可以包含任意数据QFileSystemModel:提供了本地文件系统中文件和目录的信息QSqlQ
- Qt模型/视图结构
十年编程老舅
QT开发qtqt开发Qt模型qt教程C++
MVC设计模式是起源于Smalltalk的一种与用户界面相关的设计模式。通过使用此模式,可以有效地分离数据和用户界面。MVC设计模式包括三个元素:表示数据的模型(Model)、表示用户界面的视图(View)和定义了用户在界面上操作的控制器(Controller)。与MVC设计模式类似,Qt引入了模型/视图结构用于完成数据与界面的分离,即InterView框架。但不同的是,Qt的InterView框
- 每天五分钟深度学习框架pytorch:搭建谷歌的Inception网络模块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络人工智能机器学习Inception
本文重点前面我们学习了VGG,从现在开始我们将学习谷歌公司推出的GoogLeNet。当年ImageNet竞赛的第二名是VGG,而第一名就是GoogLeNet,它的模型设计拥有很多的技巧,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构GoogLeNet的网络结构如图所示就是GoogLeNet的网络结构,在这个网络结构中我们可以看到红色框起来的地方,他就是Inception块,
- SpringMVC的工作原理
冰糖心书房
2025Java面试系列java
SpringMVC工作原理详解SpringMVC是Spring框架中用于构建Web应用程序的模块。它基于MVC(Model-View-Controller)设计模式,提供了一种清晰且可维护的方式来处理Web请求和生成响应。以下是SpringMVC工作原理的详细说明,包括各个组件的作用以及它们如何协同工作:1.用户发起请求(BrowserRequest):用户在浏览器输入URL,发起一个HTTP请求
- Modelling & Downstream Applications
后端
ComputerAidedEngineering(MEC524)Assignment:3DModelling&DownstreamApplicationsYouarerequiredtomodelanassemblyusingSolidEdgesoftware.Thesuitabilityoftheassemblyselectedmustberatifiedbythetutorbeforeyouc
- 简单介绍使用
荭色海湾
中间件实战javaandroidintellij-idea
packagecom.x.permissioncontrolserviceapiclient.model.AuthorizeTree.dto;importcom.x.globalcommonservice.global.exception.CodeException;importcom.x.globalcommonservice.global.tree.TreeNode;importcom.x.g
- Android-Amlogic-GPIO
shizhong2006
systemBSPandroid驱动开发linux
问题显示外设供电电压是19V,通过GPIO控制上下电,下面以此为例,梳理基于Amlogic平台,在Android系统里对GPIO的控制过程。Linuxversion5.4.125-android11-2-g05a36b0e5a09-dirtyMachinemodel:AmlogicT5DT950D4AM3011.5G分析过程原理图通过原理图,确定对显示外设供电的GPIO是GPIOH_13Andro
- 模型GPU->NPU(Ascend)迁移训练简述
終不似少年遊*
深度学习人工智能迁移学习GPUNPU华为云
目录一、迁移训练流程图解二、详细流程步骤1.模型训练与日志记录2.跨平台精度对齐对比3.问题定位与修复4.迭代验证三、关键技术点四、常见问题与解决方案一、迁移训练流程图解通过华为云的modelart进行运行环境选型北京四使用GPU进行模型训练,生成gpulog.json文件,记录损失函数等信息。然后,使用ptdbg_ascend工具进行精度收集,生成dump文件,由于文件过大,上传到obs桶。贵阳
- Linux Ubuntu设置ollama保存模型的路径和设置监听端口
3333333_
大模型Linuxlinux学习人工智能大模型
下载模型之前可以修改下模型默认保存路径。设置ollama保存模型的路径和监听端口sudomkdir/path/to/ollama/modelssudochown-R777/path/to/ollama/modelssudovi/etc/systemd/system/ollama.service在[Service]下面添加相应的环境变量Environment,包括OLLAMA_HOST和OLLAMA
- 书籍-《掌握Transformer:从BERT到大模型和Stable Diffusion(第二版)》
书籍:MasteringTransformers:TheJourneyfromBERTtoLargeLanguageModelsandStableDiffusion,2ndEdition作者:SavaşYıldırım,MeysamAsgari-Chenaghlu出版:PacktPublishing编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《掌握Transformer:从BERT到大模型
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/