Caffe 的可视化 (三) caffe model 的可视化
以 cifar10 quick net 为例子,
首先下载cifar10 data并且训练得到model:
#cd to the caffe root
mark@ubuntu:~$ cd caffe
#download the cifar10 data
mark@ubuntu:~/caffe$ ./data/cifar10/get_cifar10.sh
#convert to LMDB
mark@ubuntu:~/caffe$ ./examples/cifar10/create_cifar10.sh
#train the data
mark@ubuntu:~/caffe$ ./examples/cifar10/train_quick.sh
训练完后,会看到生成的model 文件 cifar10_quick_iter_4000.caffemodel 在($CAFFE_ROOT/examples/cifar10/ 里)
修改 $CAFFE_ROOT/examples/cifar10/ 里的文件 cifar10_quick_train_test.prototxt, 生成一个deploy 文件 cifar10_deploy.prototxt,内容如下:
name: "CIFAR10_quick"
input: "data"
input_dim: 1 # batchsize
input_dim: 3 # number of channels - rgb
input_dim: 32 # width
input_dim: 32 # height
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool3"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 64
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "ip2"
top: "prob"
}
import numpy as np
import matplotlib.pyplot as plt
import os
import sys
import caffe
CAFFE_ROOT = '/home/mark/caffe'
deploy_file_name = 'cifar10_deploy.prototxt'
model_file_name = 'cifar10_quick_iter_4000.caffemodel'
#编写一个函数,用于显示各层的参数,padsize用于设置图片间隔空隙,padval用于调整亮度
def show_weight(data, padsize=1, padval=0, name="conv.jpg"):
#归一化
data -= data.min()
data /= data.max()
print data.ndim
#根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
n = int(np.ceil(np.sqrt(data.shape[0])))
# padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# 先将padding后的data分成n*n张图像
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
# 再将(n, W, n, H)变换成(n*w, n*H)
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
print data.shape
plt.set_cmap('gray')
plt.imshow(data)
plt.imsave(name,data)
plt.axis('off')
if __name__ == '__main__':
deploy_file = CAFFE_ROOT + '/examples/cifar10/' + deploy_file_name
model_file = CAFFE_ROOT + '/examples/cifar10/' + model_file_name
#初始化caffe
net = caffe.Net(deploy_file, model_file, caffe.TEST)
print [(k, v[0].data.shape) for k, v in net.params.items()]
#第一个卷积层,参数规模为(32,3,5,5),即32个5*5的3通道filter
weight = net.params["conv1"][0].data
print weight.shape
show_weight(weight.reshape(32*3,5,5), padsize=2, padval=0, name="conv1-cifar10.jpg")
#第二个卷积层,参数规模为(32,32,5,5),即32个5*5的32通道filter
weight = net.params["conv2"][0].data
print weight.shape
show_weight(weight.reshape(32*32,5,5), padsize=2, padval=0, name="conv2-cifar10.jpg")
执行
mark@ubuntu:~/caffe$ python extract_weights.py
生成的可视化图如下:
conv1-cifar10.jpg
conv2-cifar10.jpg