opencv的dnn模块读取models.yml文件中包含的目标检测模型有2种,
ENet road scene segmentation network from https://github.com/e-lab/ENet-training
Works fine for different input sizes.
#include
#include
#include
#include
#include
#include
using namespace cv;
using namespace dnn;
std::vector<std::string> classes;
std::vector<Vec3b> colors;
void showLegend();
void colorizeSegmentation(const Mat &score, Mat &segm);
int main(int argc, char** argv) try {
// VGG - based FCN(semantical segmentation network)
// ENet(lightweight semantical segmentation network)
// 根据选择的检测模型文件进行配置
float confThreshold, nmsThreshold, scale;
cv::Scalar mean;
bool swapRB;
int inpWidth, inpHeight;
String modelPath, configPath, classesFile;
int modelType = 1; // 0-fcn 1-enet
if (modelType == 0){
confThreshold = 0.5;
nmsThreshold = 0.4;
scale = 1.0;
mean = Scalar{ 0,0,0 };
swapRB = false;
inpWidth = 500;
inpHeight = 500;
modelPath = "../../data/testdata/dnn/fcn8s-heavy-pascal.caffemodel";
configPath = "../../data/testdata/dnn/fcn8s-heavy-pascal.prototxt";
classesFile = "../../data/dnn/object_detection_classes_pascal_voc.txt";
}
else if (modelType == 1){
confThreshold = 0.5;
nmsThreshold = 0.4;
scale = 0.00392;
mean = Scalar{ 0,0,0 };
swapRB = false;
inpWidth = 512;
inpHeight = 256;
modelPath = "../../data/testdata/dnn/Enet-model-best.net";
configPath = "";
classesFile = "../../data/dnn/enet-classes.txt";
}
String colorFile = "";
String framework = "";
int backendId = cv::dnn::DNN_BACKEND_OPENCV;
int targetId = cv::dnn::DNN_TARGET_CPU;
// Open file with classes names.
if (!classesFile.empty()) {
const std::string file = classesFile;
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + file + " not found");
std::string line;
if (modelType == 0)
classes.push_back("background"); //使用的是object_detection_classes,需要增加背景; enet不需要,注释该行
while (std::getline(ifs, line)) {
classes.push_back(line);
}
}
if (!colorFile.empty()) {
const std::string file = colorFile;
std::ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + file + " not found");
std::string line;
while (std::getline(ifs, line)) {
std::istringstream colorStr(line.c_str());
Vec3b color;
for (int i = 0; i < 3 && !colorStr.eof(); ++i)
colorStr >> color[i];
colors.push_back(color);
}
}
CV_Assert(!modelPath.empty());
//! [Read and initialize network]
Net net = readNet(modelPath, configPath, framework);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
//! [Read and initialize network]
// Create a window
static const std::string kWinName = "Deep learning semantic segmentation in OpenCV";
namedWindow(kWinName, WINDOW_AUTOSIZE);
//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
//cap.open("../../data/image/person.jpg"); // pascal voc
cap.open("G:/Datasets/Cityscapes/aachen_%06d_000019.jpg"); // enet Cityscapes
if (!cap.isOpened()) {
std::cout << "VideoCapture open failed." << std::endl;
return 0;
}
//! [Open a video file or an image file or a camera stream]
// Process frames.
Mat frame, blob;
while (waitKey(1) < 0) {
cap >> frame;
if (frame.empty()) {
waitKey();
break;
}
//! [Create a 4D blob from a frame]
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
//! [Create a 4D blob from a frame]
//! [Set input blob]
net.setInput(blob);
//! [Set input blob]
//! [Make forward pass]
Mat score = net.forward();
//! [Make forward pass]
Mat segm;
colorizeSegmentation(score, segm);
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
// Put efficiency information.
std::vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
std::string label = format("Inference time: %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
imshow(kWinName, frame);
if (!classes.empty())
showLegend();
}
return 0;
}
catch (std::exception & e) {
std::cerr << e.what() << std::endl;
}
void colorizeSegmentation(const Mat &score, Mat &segm)
{
const int rows = score.size[2];
const int cols = score.size[3];
const int chns = score.size[1];
if (colors.empty()) {
// Generate colors.
colors.push_back(Vec3b());
for (int i = 1; i < chns; ++i) {
Vec3b color;
for (int j = 0; j < 3; ++j)
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
colors.push_back(color);
}
}
else if (chns != (int)colors.size()) {
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of colors (%d != %zu)", chns, colors.size()));
}
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
Mat maxVal(rows, cols, CV_32FC1, score.data);
for (int ch = 1; ch < chns; ch++) {
for (int row = 0; row < rows; row++) {
const float *ptrScore = score.ptr<float>(0, ch, row);
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
float *ptrMaxVal = maxVal.ptr<float>(row);
for (int col = 0; col < cols; col++) {
if (ptrScore[col] > ptrMaxVal[col]) {
ptrMaxVal[col] = ptrScore[col];
ptrMaxCl[col] = (uchar)ch;
}
}
}
}
segm.create(rows, cols, CV_8UC3);
for (int row = 0; row < rows; row++) {
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
for (int col = 0; col < cols; col++) {
ptrSegm[col] = colors[ptrMaxCl[col]];
}
}
}
void showLegend()
{
static const int kBlockHeight = 30;
static Mat legend;
if (legend.empty()) {
const int numClasses = (int)classes.size();
if ((int)colors.size() != numClasses) {
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of labels (%zu != %zu)", colors.size(), classes.size()));
}
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
for (int i = 0; i < numClasses; i++) {
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
block.setTo(colors[i]);
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
}
namedWindow("Legend", WINDOW_AUTOSIZE);
imshow("Legend", legend);
}
}
person.jpg 原图,图例,结果图如下 (opencl 比 cpu慢2倍…)
另外两张图结果