E. Side Transmutations
http://codeforces.com/contest/1065/problem/E
题意:
长度为n的字符串,字符集为A,问多少不同的字符串。两个字符串相同:
- 在给定的数组b中,找到一个数b[i],设k=b[i]
- 将1~k,与n-k+1~n 的字符串翻转,然后交换位置。新形成的字符串与原来的字符串相等。
分析:
考虑只有一个b[i]的影响,那么对于一个字符串,分成了三段,前面k个,后面k个,中间的。中间的部分就是$A^{n-k-k}$,再看两边形成多少种字符串,使得这些都是不同的。
左边k个和右边k个的所有的字符串,两两组合,加上中间的部分,构成一个字符串。然后这个字符串与操作后的字符串是相等的,于是它们应该只计算一次,所以除以2就行。但是有一些字符串操作后,与原来一样,这些也不会形成等价的字符串,所以不需除以2,算一次就行了。
左边k个的总方案数$A^{k}$,两边两两组合$A^{k+k}$。操作后与原来一样的字符串$A^{k}$,表示左边k个随便选,右边的k个为左边的倒置。那么第一部分就是$\frac{A^{k+k}-A^{k}}{2}$,再加上第二部分$A^{k}$,合并后$\frac{A^{k} \times (A^{k} + 1)}{2}$。
然后考虑增加一个b的影响,那么中间的部分,不可以在按上一个的选了,为$A^{n-k-k}$,所以先不考虑中间的,只考虑两边的。因为b[i]下一个回事两边增加b[i+1]-b[i]个字符。那么这b[i]在按照上面的方式组合,就会有形成一些新的字符串。那么乘上这些即可,最后再乘上中间的部分。就是$A^{n-b[m]-b[m]}$
代码:
1 #include
2 #include
3 #include
4 #include
5 #include
6 #include
7 #include<set>
8 #include
9 #include
10 #include