opencv人脸识别C++代码
/* * Copyright (c) 2011,2012. Philipp Wagner. * Released to public domain under terms of the BSD Simplified license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the organization nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * See < http://www.opensource.org/licenses/bsd-license> */ #include "precomp.hpp" #include <set> namespace cv { using std::set; // Reads a sequence from a FileNode::SEQ with type _Tp into a result vector. templateinline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) { if (fn.type() == FileNode::SEQ) { for (FileNodeIterator it = fn.begin(); it != fn.end();) { _Tp item; it >> item; result.push_back(item); } } } // Writes the a list of given items to a cv::FileStorage. template inline void writeFileNodeList(FileStorage& fs, const string& name, const vector<_Tp>& items) { // typedefs typedef typename vector<_Tp>::const_iterator constVecIterator; // write the elements in item to fs fs << name << "["; for (constVecIterator it = items.begin(); it != items.end(); ++it) { fs << *it; } fs << "]"; } static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) { // make sure the input data is a vector of matrices or vector of vector if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) { string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector ) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >). "; CV_Error(CV_StsBadArg, error_message); } // number of samples size_t n = src.total(); // return empty matrix if no matrices given if(n == 0) return Mat(); // dimensionality of (reshaped) samples size_t d = src.getMat(0).total(); // create data matrix Mat data((int)n, (int)d, rtype); // now copy data for(unsigned int i = 0; i < n; i++) { // make sure data can be reshaped, throw exception if not! if(src.getMat(i).total() != d) { string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total()); CV_Error(CV_StsBadArg, error_message); } // get a hold of the current row Mat xi = data.row(i); // make reshape happy by cloning for non-continuous matrices if(src.getMat(i).isContinuous()) { src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta); } else { src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta); } } return data; } // Removes duplicate elements in a given vector. templateinline vector<_Tp> remove_dups(const vector<_Tp>& src) { typedef typename set<_Tp>::const_iterator constSetIterator; typedef typename vector<_Tp>::const_iterator constVecIterator; set<_Tp> set_elems; for (constVecIterator it = src.begin(); it != src.end(); ++it) set_elems.insert(*it); vector<_Tp> elems; for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it) elems.push_back(*it); return elems; } // Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of // Cognitive Neuroscience 3 (1991), 71–86. //特征脸类 class Eigenfaces : public FaceRecognizer { private: int _num_components;//对应“数学上的事”中所提到的q个主成分 double _threshold; vector _projections;//原始向量投影后的坐标 Mat _labels;//每幅图像的标签,用于分类 Mat _eigenvectors;//特征向量 Mat _eigenvalues;//特征值 Mat _mean;//均值 public: using FaceRecognizer::save; using FaceRecognizer::load; // Initializes an empty Eigenfaces model. Eigenfaces(int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) {} // Initializes and computes an Eigenfaces model with images in src and // corresponding labels in labels. num_components will be kept for // classification. Eigenfaces(InputArrayOfArrays src, InputArray labels, int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) { train(src, labels); } // Computes an Eigenfaces model with images in src and corresponding labels // in labels. void train(InputArrayOfArrays src, InputArray labels); // Predicts the label of a query image in src. int predict(InputArray src) const; // Predicts the label and confidence for a given sample. void predict(InputArray _src, int &label, double &dist) const; // See FaceRecognizer::load. void load(const FileStorage& fs); // See FaceRecognizer::save. void save(FileStorage& fs) const; AlgorithmInfo* info() const; }; // Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher- // faces: Recognition using class specific linear projection.". IEEE // Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997), // 711–720. class Fisherfaces: public FaceRecognizer { private: int _num_components; double _threshold; Mat _eigenvectors; Mat _eigenvalues; Mat _mean; vector _projections; Mat _labels; public: using FaceRecognizer::save; using FaceRecognizer::load; // Initializes an empty Fisherfaces model. Fisherfaces(int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) {} // Initializes and computes a Fisherfaces model with images in src and // corresponding labels in labels. num_components will be kept for // classification. Fisherfaces(InputArrayOfArrays src, InputArray labels, int num_components = 0, double threshold = DBL_MAX) : _num_components(num_components), _threshold(threshold) { train(src, labels); } ~Fisherfaces() {} // Computes a Fisherfaces model with images in src and corresponding labels // in labels. void train(InputArrayOfArrays src, InputArray labels); // Predicts the label of a query image in src. int predict(InputArray src) const; // Predicts the label and confidence for a given sample. void predict(InputArray _src, int &label, double &dist) const; // See FaceRecognizer::load. void load(const FileStorage& fs); // See FaceRecognizer::save. void save(FileStorage& fs) const; AlgorithmInfo* info() const; }; // Face Recognition based on Local Binary Patterns. // // Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary // patterns: Application to face recognition." IEEE Transactions on Pattern // Analysis and Machine Intelligence, 28(12):2037-2041. // class LBPH : public FaceRecognizer { private: int _grid_x; int _grid_y; int _radius; int _neighbors; double _threshold; vector _histograms; Mat _labels; // Computes a LBPH model with images in src and // corresponding labels in labels, possibly preserving // old model data. void train(InputArrayOfArrays src, InputArray labels, bool preserveData); public: using FaceRecognizer::save; using FaceRecognizer::load; // Initializes this LBPH Model. The current implementation is rather fixed // as it uses the Extended Local Binary Patterns per default. // // radius, neighbors are used in the local binary patterns creation. // grid_x, grid_y control the grid size of the spatial histograms. LBPH(int radius_=1, int neighbors_=8, int gridx=8, int gridy=8, double threshold = DBL_MAX) : _grid_x(gridx), _grid_y(gridy), _radius(radius_), _neighbors(neighbors_), _threshold(threshold) {} // Initializes and computes this LBPH Model. The current implementation is // rather fixed as it uses the Extended Local Binary Patterns per default. // // (radius=1), (neighbors=8) are used in the local binary patterns creation. // (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms. LBPH(InputArrayOfArrays src, InputArray labels, int radius_=1, int neighbors_=8, int gridx=8, int gridy=8, double threshold = DBL_MAX) : _grid_x(gridx), _grid_y(gridy), _radius(radius_), _neighbors(neighbors_), _threshold(threshold) { train(src, labels); } ~LBPH() { } // Computes a LBPH model with images in src and // corresponding labels in labels. void train(InputArrayOfArrays src, InputArray labels); // Updates this LBPH model with images in src and // corresponding labels in labels. void update(InputArrayOfArrays src, InputArray labels); // Predicts the label of a query image in src. int predict(InputArray src) const; // Predicts the label and confidence for a given sample. void predict(InputArray _src, int &label, double &dist) const; // See FaceRecognizer::load. void load(const FileStorage& fs); // See FaceRecognizer::save. void save(FileStorage& fs) const; // Getter functions. int neighbors() const { return _neighbors; } int radius() const { return _radius; } int grid_x() const { return _grid_x; } int grid_y() const { return _grid_y; } AlgorithmInfo* info() const; }; //------------------------------------------------------------------------------ // FaceRecognizer //------------------------------------------------------------------------------ void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels ) { if( dynamic_cast (this) != 0 ) { dynamic_cast (this)->update( src, labels ); return; } string error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str()); CV_Error(CV_StsNotImplemented, error_msg); } void FaceRecognizer::save(const string& filename) const { FileStorage fs(filename, FileStorage::WRITE); if (!fs.isOpened()) CV_Error(CV_StsError, "File can't be opened for writing!"); this->save(fs); fs.release(); } void FaceRecognizer::load(const string& filename) { FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) CV_Error(CV_StsError, "File can't be opened for writing!"); this->load(fs); fs.release(); } //------------------------------------------------------------------------------ // Eigenfaces特征脸训练函数 //------------------------------------------------------------------------------ void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) { if(_src.total() == 0) { string error_message = format("Empty training data was given. You'll need more than one sample to learn a model."); CV_Error(CV_StsBadArg, error_message); } else if(_local_labels.getMat().type() != CV_32SC1) { string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type()); CV_Error(CV_StsBadArg, error_message); } // make sure data has correct size确保输入的图像数据尺寸正确(所有尺寸相同) if(_src.total() > 1) { for(int i = 1; i < static_cast<int>(_src.total()); i++) { if(_src.getMat(i-1).total() != _src.getMat(i).total()) { string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total()); CV_Error(CV_StsUnsupportedFormat, error_message); } } } // get labels Mat labels = _local_labels.getMat(); // observations in row Mat data = asRowMatrix(_src, CV_64FC1);//将_src中存放的图像列表中的每幅图像(reshape成1行)作为data的一行 // number of samples int n = data.rows; // assert there are as much samples as labels if(static_cast<int>(labels.total()) != n) { string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total()); CV_Error(CV_StsBadArg, error_message); } // clear existing model data _labels.release(); _projections.clear(); // clip number of components to be valid if((_num_components <= 0) || (_num_components > n)) _num_components = n; // perform the PCA PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, _num_components); // copy the PCA results _mean = pca.mean.reshape(1,1); // store the mean vector获取均值向量 _eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row获取特征值 transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column获取特征向量 // store labels for prediction _labels = labels.clone();//获取分类标签 // save projections for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) { Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx)); _projections.push_back(p); } } void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const { // get data Mat src = _src.getMat(); // make sure the user is passing correct data if(_projections.empty()) { // throw error if no data (or simply return -1?) string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?"; CV_Error(CV_StsError, error_message); } else if(_eigenvectors.rows != static_cast<int>(src.total())) { // check data alignment just for clearer exception messages string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total()); CV_Error(CV_StsBadArg, error_message); } // project into PCA subspace Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));// 投影到PCA的主成分空间 minDist = DBL_MAX; minClass = -1; //求L2范数也就是欧式距离 for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) { double dist = norm(_projections[sampleIdx], q, NORM_L2); if((dist < minDist) && (dist < _threshold)) { minDist = dist; minClass = _labels.at<int>((int)sampleIdx); } } } int Eigenfaces::predict(InputArray _src) const { int label; double dummy; predict(_src, label, dummy); return label; } void Eigenfaces::load(const FileStorage& fs) { //read matrices fs["num_components"] >> _num_components; fs["mean"] >> _mean; fs["eigenvalues"] >> _eigenvalues; fs["eigenvectors"] >> _eigenvectors; // read sequences readFileNodeList(fs["projections"], _projections); fs["labels"] >> _labels; } void Eigenfaces::save(FileStorage& fs) const { // write matrices fs << "num_components" << _num_components; fs << "mean" << _mean; fs << "eigenvalues" << _eigenvalues; fs << "eigenvectors" << _eigenvectors; // write sequences writeFileNodeList(fs, "projections", _projections); fs << "labels" << _labels; } //------------------------------------------------------------------------------ // Fisherfaces //------------------------------------------------------------------------------ void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) { if(src.total() == 0) { string error_message = format("Empty training data was given. You'll need more than one sample to learn a model."); CV_Error(CV_StsBadArg, error_message); } else if(_lbls.getMat().type() != CV_32SC1) { string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type()); CV_Error(CV_StsBadArg, error_message); } // make sure data has correct size if(src.total() > 1) { for(int i = 1; i < static_cast<int>(src.total()); i++) { if(src.getMat(i-1).total() != src.getMat(i).total()) { string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total()); CV_Error(CV_StsUnsupportedFormat, error_message); } } } // get data Mat labels = _lbls.getMat(); Mat data = asRowMatrix(src, CV_64FC1); // number of samples int N = data.rows; // make sure labels are passed in correct shape if(labels.total() != (size_t) N) { string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total()); CV_Error(CV_StsBadArg, error_message); } else if(labels.rows != 1 && labels.cols != 1) { string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols); CV_Error(CV_StsBadArg, error_message); } // clear existing model data _labels.release(); _projections.clear(); // safely copy from cv::Mat to std::vector vector<int> ll; for(unsigned int i = 0; i < labels.total(); i++) { ll.push_back(labels.at<int>(i)); } // get the number of unique classes int C = (int) remove_dups(ll).size(); // clip number of components to be a valid number if((_num_components <= 0) || (_num_components > (C-1))) _num_components = (C-1); // perform a PCA and keep (N-C) components PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C)); // project the data and perform a LDA on it LDA lda(pca.project(data),labels, _num_components); // store the total mean vector _mean = pca.mean.reshape(1,1); // store labels _labels = labels.clone(); // store the eigenvalues of the discriminants lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1); // Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors. // Note: OpenCV stores the eigenvectors by row, so we need to transpose it! gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T); // store the projections of the original data for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) { Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx)); _projections.push_back(p); } } void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const { Mat src = _src.getMat(); // check data alignment just for clearer exception messages if(_projections.empty()) { // throw error if no data (or simply return -1?) string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?"; CV_Error(CV_StsBadArg, error_message); } else if(src.total() != (size_t) _eigenvectors.rows) { string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total()); CV_Error(CV_StsBadArg, error_message); } // project into LDA subspace Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1)); // find 1-nearest neighbor minDist = DBL_MAX; minClass = -1; for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) { double dist = norm(_projections[sampleIdx], q, NORM_L2); if((dist < minDist) && (dist < _threshold)) { minDist = dist; minClass = _labels.at<int>((int)sampleIdx); } } } int Fisherfaces::predict(InputArray _src) const { int label; double dummy; predict(_src, label, dummy); return label; } // See FaceRecognizer::load. void Fisherfaces::load(const FileStorage& fs) { //read matrices fs["num_components"] >> _num_components; fs["mean"] >> _mean; fs["eigenvalues"] >> _eigenvalues; fs["eigenvectors"] >> _eigenvectors; // read sequences readFileNodeList(fs["projections"], _projections); fs["labels"] >> _labels; } // See FaceRecognizer::save. void Fisherfaces::save(FileStorage& fs) const { // write matrices fs << "num_components" << _num_components; fs << "mean" << _mean; fs << "eigenvalues" << _eigenvalues; fs << "eigenvectors" << _eigenvectors; // write sequences writeFileNodeList(fs, "projections", _projections); fs << "labels" << _labels; } //------------------------------------------------------------------------------ // LBPH //------------------------------------------------------------------------------ template static void olbp_(InputArray _src, OutputArray _dst) { // get matrices Mat src = _src.getMat(); // allocate memory for result _dst.create(src.rows-2, src.cols-2, CV_8UC1); Mat dst = _dst.getMat(); // zero the result matrix dst.setTo(0); // calculate patterns for(int i=1;i 1;i++) { for(int j=1;j 1;j++) { _Tp center = src.at<_Tp>(i,j); unsigned char code = 0; code |= (src.at<_Tp>(i-1,j-1) >= center) << 7; code |= (src.at<_Tp>(i-1,j) >= center) << 6; code |= (src.at<_Tp>(i-1,j+1) >= center) << 5; code |= (src.at<_Tp>(i,j+1) >= center) << 4; code |= (src.at<_Tp>(i+1,j+1) >= center) << 3; code |= (src.at<_Tp>(i+1,j) >= center) << 2; code |= (src.at<_Tp>(i+1,j-1) >= center) << 1; code |= (src.at<_Tp>(i,j-1) >= center) << 0; dst.at char>(i-1,j-1) = code; } } } //------------------------------------------------------------------------------ // cv::elbp //------------------------------------------------------------------------------ template static inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) { //get matrices Mat src = _src.getMat(); // allocate memory for result _dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1); Mat dst = _dst.getMat(); // zero dst.setTo(0); for(int n=0; n ) { // sample points float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors))); float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors))); // relative indices int fx = static_cast<int>(floor(x)); int fy = static_cast<int>(floor(y)); int cx = static_cast<int>(ceil(x)); int cy = static_cast<int>(ceil(y)); // fractional part float ty = y - fy; float tx = x - fx; // set interpolation weights float w1 = (1 - tx) * (1 - ty); float w2 = tx * (1 - ty); float w3 = (1 - tx) * ty; float w4 = tx * ty; // iterate through your data for(int i=radius; i < src.rows-radius;i++) { for(int j=radius;j < src.cols-radius;j++) { // calculate interpolated value float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx)); // floating point precision, so check some machine-dependent epsilon dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n; } } } } static void elbp(InputArray src, OutputArray dst, int radius, int neighbors) { int type = src.type(); switch (type) { case CV_8SC1: elbp_<char>(src,dst, radius, neighbors); break; case CV_8UC1: elbp_ char>(src, dst, radius, neighbors); break; case CV_16SC1: elbp_<short>(src,dst, radius, neighbors); break; case CV_16UC1: elbp_ short>(src,dst, radius, neighbors); break; case CV_32SC1: elbp_<int>(src,dst, radius, neighbors); break; case CV_32FC1: elbp_<float>(src,dst, radius, neighbors); break; case CV_64FC1: elbp_<double>(src,dst, radius, neighbors); break; default: string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type); CV_Error(CV_StsNotImplemented, error_msg); break; } } static Mat histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false) { Mat result; // Establish the number of bins. int histSize = maxVal-minVal+1; // Set the ranges. float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) }; const float* histRange = { range }; // calc histogram calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false); // normalize if(normed) { result /= (int)src.total(); } return result.reshape(1,1); } static Mat histc(InputArray _src, int minVal, int maxVal, bool normed) { Mat src = _src.getMat(); switch (src.type()) { case CV_8SC1: return histc_(Mat_<float>(src), minVal, maxVal, normed); break; case CV_8UC1: return histc_(src, minVal, maxVal, normed); break; case CV_16SC1: return histc_(Mat_<float>(src), minVal, maxVal, normed); break; case CV_16UC1: return histc_(src, minVal, maxVal, normed); break; case CV_32SC1: return histc_(Mat_<float>(src), minVal, maxVal, normed); break; case CV_32FC1: return histc_(src, minVal, maxVal, normed); break; default: CV_Error(CV_StsUnmatchedFormats, "This type is not implemented yet."); break; } return Mat(); } static Mat spatial_histogram(InputArray _src, int numPatterns, int grid_x, int grid_y, bool /*normed*/) { Mat src = _src.getMat(); // calculate LBP patch size int width = src.cols/grid_x; int height = src.rows/grid_y; // allocate memory for the spatial histogram Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1); // return matrix with zeros if no data was given if(src.empty()) return result.reshape(1,1); // initial result_row int resultRowIdx = 0; // iterate through grid for(int i = 0; i < grid_y; i++) { for(int j = 0; j < grid_x; j++) { Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width)); Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true); // copy to the result matrix Mat result_row = result.row(resultRowIdx); cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1); // increase row count in result matrix resultRowIdx++; } } // return result as reshaped feature vector return result.reshape(1,1); } //------------------------------------------------------------------------------ // wrapper to cv::elbp (extended local binary patterns) //------------------------------------------------------------------------------ static Mat elbp(InputArray src, int radius, int neighbors) { Mat dst; elbp(src, dst, radius, neighbors); return dst; } void LBPH::load(const FileStorage& fs) { fs["radius"] >> _radius; fs["neighbors"] >> _neighbors; fs["grid_x"] >> _grid_x; fs["grid_y"] >> _grid_y; //read matrices readFileNodeList(fs["histograms"], _histograms); fs["labels"] >> _labels; } // See FaceRecognizer::save. void LBPH::save(FileStorage& fs) const { fs << "radius" << _radius; fs << "neighbors" << _neighbors; fs << "grid_x" << _grid_x; fs << "grid_y" << _grid_y; // write matrices writeFileNodeList(fs, "histograms", _histograms); fs << "labels" << _labels; } void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels) { this->train(_in_src, _in_labels, false); } void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) { // got no data, just return if(_in_src.total() == 0) return; this->train(_in_src, _in_labels, true); } void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) { if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) { string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector ) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >). "; CV_Error(CV_StsBadArg, error_message); } if(_in_src.total() == 0) { string error_message = format("Empty training data was given. You'll need more than one sample to learn a model."); CV_Error(CV_StsUnsupportedFormat, error_message); } else if(_in_labels.getMat().type() != CV_32SC1) { string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type()); CV_Error(CV_StsUnsupportedFormat, error_message); } // get the vector of matrices vectorsrc; _in_src.getMatVector(src); // get the label matrix Mat labels = _in_labels.getMat(); // check if data is well- aligned if(labels.total() != src.size()) { string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total()); CV_Error(CV_StsBadArg, error_message); } // if this model should be trained without preserving old data, delete old model data if(!preserveData) { _labels.release(); _histograms.clear(); } // append labels to _labels matrix for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) { _labels.push_back(labels.at<int>((int)labelIdx)); } // store the spatial histograms of the original data for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) { // calculate lbp image Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors); // get spatial histogram from this lbp image Mat p = spatial_histogram( lbp_image, /* lbp_image */ static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */ _grid_x, /* grid size x */ _grid_y, /* grid size y */ true); // add to templates _histograms.push_back(p); } } void LBPH::predict(InputArray _src, int &minClass, double &minDist) const { if(_histograms.empty()) { // throw error if no data (or simply return -1?) string error_message = "This LBPH model is not computed yet. Did you call the train method?"; CV_Error(CV_StsBadArg, error_message); } Mat src = _src.getMat(); // get the spatial histogram from input image Mat lbp_image = elbp(src, _radius, _neighbors); Mat query = spatial_histogram( lbp_image, /* lbp_image */ static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */ _grid_x, /* grid size x */ _grid_y, /* grid size y */ true /* normed histograms */); // find 1-nearest neighbor minDist = DBL_MAX; minClass = -1; for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) { double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR); if((dist < minDist) && (dist < _threshold)) { minDist = dist; minClass = _labels.at<int>((int) sampleIdx); } } } int LBPH::predict(InputArray _src) const { int label; double dummy; predict(_src, label, dummy); return label; } Ptr createEigenFaceRecognizer(int num_components, double threshold) { return new Eigenfaces(num_components, threshold); } Ptr createFisherFaceRecognizer(int num_components, double threshold) { return new Fisherfaces(num_components, threshold); } Ptr createLBPHFaceRecognizer(int radius, int neighbors, int grid_x, int grid_y, double threshold) { return new LBPH(radius, neighbors, grid_x, grid_y, threshold); } CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces", obj.info()->addParam(obj, "ncomponents", obj._num_components); obj.info()->addParam(obj, "threshold", obj._threshold); obj.info()->addParam(obj, "projections", obj._projections, true); obj.info()->addParam(obj, "labels", obj._labels, true); obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true); obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true); obj.info()->addParam(obj, "mean", obj._mean, true)); CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces", obj.info()->addParam(obj, "ncomponents", obj._num_components); obj.info()->addParam(obj, "threshold", obj._threshold); obj.info()->addParam(obj, "projections", obj._projections, true); obj.info()->addParam(obj, "labels", obj._labels, true); obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true); obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true); obj.info()->addParam(obj, "mean", obj._mean, true)); CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH", obj.info()->addParam(obj, "radius", obj._radius); obj.info()->addParam(obj, "neighbors", obj._neighbors); obj.info()->addParam(obj, "grid_x", obj._grid_x); obj.info()->addParam(obj, "grid_y", obj._grid_y); obj.info()->addParam(obj, "threshold", obj._threshold); obj.info()->addParam(obj, "histograms", obj._histograms, true); obj.info()->addParam(obj, "labels", obj._labels, true)); bool initModule_contrib() { Ptr efaces = createEigenfaces(), ffaces = createFisherfaces(), lbph = createLBPH(); return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0; } }
http://read.pudn.com/downloads674/sourcecode/graph/opencv/2728222/facerec.cpp__.htm