YOLOv3:Darknet代码解析(五)权重与特征存储

背景:我们去掉了两层卷积层,将网络结构变小。

目的:找到网络的权重如何读取与存储,找到网络中与卷积有关的运算。

相关文章:

YOLOv3:Darknet代码解析(一)安装Darknet

YOLOv3:Darknet代码解析(二)代码初步

YOLOv3:Darknet代码解析(三)卷积操作

YOLOv3:Darknet代码解析(四)结构更改与训练

YOLOv3:Darknet代码解析(五)权重与特征存储

YOLOv3:Darknet代码解析(六)简化的程序与卷积拆分

目录

1.创建卷积层与运行卷积层

1.1 make_convolutional_layer

1.1.1 层中参数的作用

1.2 forward_convolutional_layer函数

2.weight如何传入

2.1 与weight传入相关的函数

2.1.2 foward_convolutional_layer

2.1.3 parse_convolutional

2.2 load_weight

2.2.1 相关知识fopen

2.2.2 相关知识fread

2.2.3 相关知识ftell函数

2.2.4 相关知识rewind函数

3. Weight文件与存储大小

4. 程序的feature存储

4.1 net.workspace

4.2 forward_convolutional_layer

4.3 一个没有搞懂的语句

4.4 fill_cpu函数

5.权重与特征表


1.创建卷积层与运行卷积层

分别为make_convolutional_layer和forward_convolutional_layer两个函数,一个创建卷积层,一个运行卷积层

//make_convolutional_layer
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
{
    int i;
    convolutional_layer l = {0};
    l.type = CONVOLUTIONAL;

    l.groups = groups;
    l.h = h;
    l.w = w;
    l.c = c;
    l.n = n;
    l.binary = binary;
    l.xnor = xnor;
    l.batch = batch;
    l.stride = stride;
    l.size = size;
    l.pad = padding;
    l.batch_normalize = batch_normalize;

    l.weights = calloc(c/groups*n*size*size, sizeof(float));
    l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));

    l.biases = calloc(n, sizeof(float));
    l.bias_updates = calloc(n, sizeof(float));

    l.nweights = c/groups*n*size*size;
    l.nbiases = n;

    float scale = sqrt(2./(size*size*c/l.groups));

    for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
    int out_w = convolutional_out_width(l);
    int out_h = convolutional_out_height(l);
    l.out_h = out_h;
    l.out_w = out_w;
    l.out_c = n;
    l.outputs = l.out_h * l.out_w * l.out_c;
    l.inputs = l.w * l.h * l.c;

    l.output = calloc(l.batch*l.outputs, sizeof(float));
    l.delta  = calloc(l.batch*l.outputs, sizeof(float));

    l.forward = forward_convolutional_layer;
    l.backward = backward_convolutional_layer;
    l.update = update_convolutional_layer;

    if(batch_normalize){
        l.scales = calloc(n, sizeof(float));
        l.scale_updates = calloc(n, sizeof(float));
        for(i = 0; i < n; ++i){
            l.scales[i] = 1;
        }

        l.mean = calloc(n, sizeof(float));
        l.variance = calloc(n, sizeof(float));

        l.mean_delta = calloc(n, sizeof(float));
        l.variance_delta = calloc(n, sizeof(float));

        l.rolling_mean = calloc(n, sizeof(float));
        l.rolling_variance = calloc(n, sizeof(float));
        l.x = calloc(l.batch*l.outputs, sizeof(float));
        l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
    }
    if(adam){
        l.m = calloc(l.nweights, sizeof(float));
        l.v = calloc(l.nweights, sizeof(float));
        l.bias_m = calloc(n, sizeof(float));
        l.scale_m = calloc(n, sizeof(float));
        l.bias_v = calloc(n, sizeof(float));
        l.scale_v = calloc(n, sizeof(float));
    }
    l.workspace_size = get_workspace_size(l);
    l.activation = activation;

    fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d  %5.3f BFLOPs\n", 
							n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c,
							(2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);

    return l;
}

1.1 make_convolutional_layer

1.1.1 层中参数的作用

输出语句,结合相应的输出,知道每一个参量的意义。

YOLOv3:Darknet代码解析(五)权重与特征存储_第1张图片

fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d  %5.3f BFLOPs\n",
                            n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c,
                            (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);

参数含义:

  • n滤波器的个数,
  • size滤波器的大小,
  • stride步长
  • w输入的宽
  • h输入的高
  • c输入的层数
  • l.out_w输出的宽
  • l.out_h输出的高
  • l.out_c输出的层数

1.2 forward_convolutional_layer函数


void forward_convolutional_layer(convolutional_layer l, network net)
{
    int i, j;

    fill_cpu(l.outputs*l.batch, 0, l.output, 1);

    int m = l.n/l.groups;
    int k = l.size*l.size*l.c/l.groups;
    int n = l.out_w*l.out_h;
    for(i = 0; i < l.batch; ++i){
        for(j = 0; j < l.groups; ++j){
            float *a = l.weights + j*l.nweights/l.groups;
            float *b = net.workspace;
            float *c = l.output + (i*l.groups + j)*n*m;
            float *im =  net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;

            if (l.size == 1) {
                b = im;
            } else {
                im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
            }
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        }
    }

    if(l.batch_normalize){
        forward_batchnorm_layer(l, net);
    } else {
        add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w);
    }

    activate_array(l.output, l.outputs*l.batch, l.activation);
    if(l.binary || l.xnor) swap_binary(&l);
}

函数中gemm用来执行相应的卷积语句。a,b,c均为指针,分别指向weights,input,output

fill_cpu的作用是将outputs置为0,以便后面的累加。

2.weight如何传入

2.1 与weight传入相关的函数

2.1.2 foward_convolutional_layer

//forward_convolutional_layer
    int m = l.n/l.groups;
    int k = l.size*l.size*l.c/l.groups;
    int n = l.out_w*l.out_h;
    for(i = 0; i < l.batch; ++i){
        for(j = 0; j < l.groups; ++j){
            float *a = l.weights + j*l.nweights/l.groups;
            float *b = net.workspace;
            float *c = l.output + (i*l.groups + j)*n*m;
            float *im =  net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;

            if (l.size == 1) {
                b = im;
            } else {
                im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
            }
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        }
    }

其中权重存在

 float *a = l.weights + j*l.nweights/l.groups;

其中,l.weights为存在结构体layer中的float指针。

  //make_convolutional_layer函数
    l.weights = calloc(c/groups*n*size*size, sizeof(float));
    l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));

make_convolutional_layer函数值直接开辟了相应的weight指针,输入的大小为三维卷积核的大小(c*size*size)乘以卷积核的个数(n)  yolo_v3中引入了分组计算,因此有一个group,下面的运算中,batch用于批量运算,groups用于把相应的bathc拆分成不同的组进行运算,我们可以将batch和group忽略。

我们需要找到在哪里送入权重值给l.weight指针。

2.1.3 parse_convolutional

//parser.c  parse_convolutional
convolutional_layer parse_convolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int_quiet(options, "pad",0);
    int padding = option_find_int_quiet(options, "padding",0);
    int groups = option_find_int_quiet(options, "groups", 1);
    if(pad) padding = size/2;

    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);

    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before convolutional layer must output image.");
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    int binary = option_find_int_quiet(options, "binary", 0);
    int xnor = option_find_int_quiet(options, "xnor", 0);

    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,groups,size,stride,padding,activation, batch_normalize, binary, xnor, params.net->adam);
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);

    return layer;
}

该函数根据输入的cfg文件给的参数创建了相应的卷积层,函数中运用make_convolutional函数来创建和开辟相应的权值存储的内存空间。依然没有给出权重的加载位置。真正加载权值的语句在load_weight这个函数中

2.2 load_weight

//darknet.c    main
else if (0 == strcmp(argv[1], "detect")){
        float thresh = find_float_arg(argc, argv, "-thresh", .5);
        char *filename = (argc > 4) ? argv[4]: 0;
        char *outfile = find_char_arg(argc, argv, "-out", 0);
        int fullscreen = find_arg(argc, argv, "-fullscreen");
        test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);

//detector.c   test_detector    
network *net = load_network(cfgfile, weightfile, 0);

//netwokr.c load_network
network *load_network(char *cfg, char *weights, int clear)
{
    network *net = parse_network_cfg(cfg);
    if(weights && weights[0] != 0){
        load_weights(net, weights);
    }
    if(clear) (*net->seen) = 0;
    return net;
}

从主函数中一层一层往内,找到了权重的核心语句为:load_weights

//parser.c load_weights
void load_weights(network *net, char *filename)
{
    load_weights_upto(net, filename, 0, net->n);
}

//load_weights_upto
void load_weights_upto(network *net, char *filename, int start, int cutoff)
{
    fprintf(stderr, "Loading weights from %s...", filename);
    fflush(stdout);
    FILE *fp = fopen(filename, "rb");
    if(!fp) file_error(filename);

    int major;
    int minor;
    int revision;
    fread(&major, sizeof(int), 1, fp);
    fread(&minor, sizeof(int), 1, fp);
    fread(&revision, sizeof(int), 1, fp);
    if ((major*10 + minor) >= 2 && major < 1000 && minor < 1000){
        fread(net->seen, sizeof(size_t), 1, fp);
    } else {
        int iseen = 0;
        fread(&iseen, sizeof(int), 1, fp);
        *net->seen = iseen;
    }
    int transpose = (major > 1000) || (minor > 1000);

    int i;
    for(i = start; i < net->n && i < cutoff; ++i){
        layer l = net->layers[i];
        if (l.dontload) continue;
        if(l.type == CONVOLUTIONAL || l.type == DECONVOLUTIONAL){
            load_convolutional_weights(l, fp);
        }
            }
        }
        if(l.type == LOCAL){
            int locations = l.out_w*l.out_h;
            int size = l.size*l.size*l.c*l.n*locations;
            fread(l.biases, sizeof(float), l.outputs, fp);
            fread(l.weights, sizeof(float), size, fp);
        }
    }
    fprintf(stderr, "Done!\n");
    fclose(fp);
}

该函数从weight文件中,运用指针fp指向权重文件,根据network中每层的类型,一层一层加载权重。

YOLOv3:Darknet代码解析(五)权重与特征存储_第2张图片

//parser.c  load_convolutional_weights
void load_convolutional_weights(layer l, FILE *fp)
{
    int num = l.nweights;
    fread(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize && (!l.dontloadscales)){
        fread(l.scales, sizeof(float), l.n, fp);
        fread(l.rolling_mean, sizeof(float), l.n, fp);
        fread(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fread(l.weights, sizeof(float), num, fp);
    if (l.flipped) {
        transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
    }
}

2.2.1 相关知识fopen

fopen :    https://baike.baidu.com/item/fopen/10942321?fr=aladdin

fread  :    https://baike.baidu.com/item/fread/10942353?fr=aladdin

函数原型:FILE * fopen(const char * path, const char * mode);

返回值:文件顺利打开后,指向该流的文件指针就会被返回。如果文件打开失败则返回 NULL,并把错误代码存在error中。

FILE *fp = fopen(filename, "rb");

代码中如上,b表示二进制文件,r表示只读,r+表示可读写,rb表示以只读格式打开二进制文件。

2.2.2 相关知识fread

函数原型:size_t fread ( void *buffer, size_t size, size_t count, FILE *stream) ;

  • buffer:用于接收数据的内存地址
  • size:要读的每个数据项的字节数,单位是字节
  • count:要读count个数据项,每个数据项size个字节.
  • stream:输入流

返回值:需要读取的项数,小于或者等于count。

fread(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize && (!l.dontloadscales)){
        fread(l.scales, sizeof(float), l.n, fp);
        fread(l.rolling_mean, sizeof(float), l.n, fp);
        fread(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fread(l.weights, sizeof(float), num, fp);

代码中如上,先读biases,n个卷积核有n个biasies,然后读入weight的个数num=l.nweights

2.2.3 相关知识ftell函数

ftell函数用以获得文件当前位置指针的位置,函数给出当前位置指针相对于文件开头的字节数.如;
long t;
t=ftell(pf);
当函数调用出错时,函数返回-1L.
我们可以通过以下方式来测试一个文件的长度:
fseek(fp,0L,SEEK_END);
t=ftell(fp);

2.2.4 相关知识rewind函数

调用形式为:rewind(pf);
函数没有返回值.函数的功能是使文件的位置指针回到文件的开头.

3. Weight文件与存储大小

我们在load_weights_upto和load_convolutional_weights函数中加上输出。

Loading weights from obj_9000.weights...
Loading weights for conv layer 0...
Weight file location before load weights 16...
biasis num:16,Weights num:432...
Batch normalize and loadscales,rolling_means and variance:48...
Weight file location after load weights 2000...
Loading weights for conv layer 2...
Weight file location before load weights 2000...
biasis num:32,Weights num:4608...
Batch normalize and loadscales,rolling_means and variance:96...
Weight file location after load weights 20944...
Loading weights for conv layer 4...
Weight file location before load weights 20944...
biasis num:64,Weights num:18432...
Batch normalize and loadscales,rolling_means and variance:192...
Weight file location after load weights 95696...
Loading weights for conv layer 6...
Weight file location before load weights 95696...
biasis num:128,Weights num:73728...
Batch normalize and loadscales,rolling_means and variance:384...
Weight file location after load weights 392656...
Loading weights for conv layer 8...
Weight file location before load weights 392656...
biasis num:256,Weights num:294912...
Batch normalize and loadscales,rolling_means and variance:768...
Weight file location after load weights 1576400...
Loading weights for conv layer 10...
Weight file location before load weights 1576400...
biasis num:512,Weights num:1179648...
Batch normalize and loadscales,rolling_means and variance:1536...
Weight file location after load weights 6303184...
Loading weights for conv layer 12...
Weight file location before load weights 6303184...
biasis num:1024,Weights num:4718592...
Batch normalize and loadscales,rolling_means and variance:3072...
Weight file location after load weights 6364744...
Loading weights for conv layer 13...
Weight file location before load weights 6364744...
biasis num:1024,Weights num:9437184...
Batch normalize and loadscales,rolling_means and variance:3072...
Weight file location after load weights 6364744...
Loading weights for conv layer 14...
Weight file location before load weights 6364744...
biasis num:30,Weights num:30720...
Weight file location after load weights 6364744...
Done!

4. 程序的feature存储

观察程序发现feature存储在workspace中,其值为一个指针。

network *parse_network_cfg(char *filename)
{
    list *sections = read_cfg(filename);
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network *net = make_network(sections->size - 1);
    net->gpu_index = gpu_index;
    size_params params;

    section *s = (section *)n->val;
    list *options = s->options;
    if(!is_network(s)) error("First section must be [net] or [network]");
    parse_net_options(options, net);

    params.h = net->h;
    params.w = net->w;
    params.c = net->c;
    params.inputs = net->inputs;
    params.batch = net->batch;
    params.time_steps = net->time_steps;
    params.net = net;

    size_t workspace_size = 0;
    n = n->next;
    int count = 0;
    free_section(s);
    fprintf(stderr, "layer     filters    size              input                output\n");
    while(n){
        params.index = count;
        fprintf(stderr, "%5d ", count);
        s = (section *)n->val;
        options = s->options;
        layer l = {0};
        LAYER_TYPE lt = string_to_layer_type(s->type);
        if(lt == CONVOLUTIONAL){
            l = parse_convolutional(options, params);
        }else if(lt == DECONVOLUTIONAL){
            l = parse_deconvolutional(options, params);
        }else if(lt == LOCAL){
            l = parse_local(options, params);
        }else if(lt == ACTIVE){
            l = parse_activation(options, params);
        }else if(lt == LOGXENT){
            l = parse_logistic(options, params);
        }else if(lt == L2NORM){
            l = parse_l2norm(options, params);
        }else if(lt == RNN){
            l = parse_rnn(options, params);
        }else if(lt == GRU){
            l = parse_gru(options, params);
        }else if (lt == LSTM) {
            l = parse_lstm(options, params);
        }else if(lt == CRNN){
            l = parse_crnn(options, params);
        }else if(lt == CONNECTED){
            l = parse_connected(options, params);
        }else if(lt == CROP){
            l = parse_crop(options, params);
        }else if(lt == COST){
            l = parse_cost(options, params);
        }else if(lt == REGION){
            l = parse_region(options, params);
        }else if(lt == YOLO){
            l = parse_yolo(options, params);
        }else if(lt == DETECTION){
            l = parse_detection(options, params);
        }else if(lt == SOFTMAX){
            l = parse_softmax(options, params);
            net->hierarchy = l.softmax_tree;
        }else if(lt == NORMALIZATION){
            l = parse_normalization(options, params);
        }else if(lt == BATCHNORM){
            l = parse_batchnorm(options, params);
        }else if(lt == MAXPOOL){
            l = parse_maxpool(options, params);
        }else if(lt == REORG){
            l = parse_reorg(options, params);
        }else if(lt == AVGPOOL){
            l = parse_avgpool(options, params);
        }else if(lt == ROUTE){
            l = parse_route(options, params, net);
        }else if(lt == UPSAMPLE){
            l = parse_upsample(options, params, net);
        }else if(lt == SHORTCUT){
            l = parse_shortcut(options, params, net);
        }else if(lt == DROPOUT){
            l = parse_dropout(options, params);
            l.output = net->layers[count-1].output;
            l.delta = net->layers[count-1].delta;

        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
        l.clip = net->clip;
        l.truth = option_find_int_quiet(options, "truth", 0);
        l.onlyforward = option_find_int_quiet(options, "onlyforward", 0);
        l.stopbackward = option_find_int_quiet(options, "stopbackward", 0);
        l.dontsave = option_find_int_quiet(options, "dontsave", 0);
        l.dontload = option_find_int_quiet(options, "dontload", 0);
        l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0);
        l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1);
        l.smooth = option_find_float_quiet(options, "smooth", 0);
        option_unused(options);
        net->layers[count] = l;
        if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
        free_section(s);
        n = n->next;
        ++count;
        if(n){
            params.h = l.out_h;
            params.w = l.out_w;
            params.c = l.out_c;
            params.inputs = l.outputs;
        }
    }
    free_list(sections);
    layer out = get_network_output_layer(net);
    net->outputs = out.outputs;
    net->truths = out.outputs;
    if(net->layers[net->n-1].truths) net->truths = net->layers[net->n-1].truths;
    net->output = out.output;
    net->input = calloc(net->inputs*net->batch, sizeof(float));
    net->truth = calloc(net->truths*net->batch, sizeof(float));
#ifdef GPU
    net->output_gpu = out.output_gpu;
    net->input_gpu = cuda_make_array(net->input, net->inputs*net->batch);
    net->truth_gpu = cuda_make_array(net->truth, net->truths*net->batch);
#endif
    if(workspace_size){
        //printf("%ld\n", workspace_size);
#ifdef GPU
        if(gpu_index >= 0){
            net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1);
        }else {
            net->workspace = calloc(1, workspace_size);
        }
#else
        net->workspace = calloc(1, workspace_size);
	fprintf(stderr, "Network parse Done! network WorkSpace_size:%d\n",workspace_size);
#endif
    }
    return net;
}

parse_network_cfg中把网络的workspace_size定义为每层中需要的workspace_size的最大值。

4.1 net.workspace

parse_convolutional文件是根据cfg文件找到适宜的参数传给make_convolutional_layer,然后具体的层的开辟需要make_convolutional函数来运行。forward_convolutional_layer是运行具体的层的运算。其中,feature存在net.workspace中

for(i = 0; i < l.batch; ++i){
        for(j = 0; j < l.groups; ++j){
            float *a = l.weights + j*l.nweights/l.groups;
            float *b = net.workspace;
            float *c = l.output + (i*l.groups + j)*n*m;
            float *im =  net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;

            if (l.size == 1) {
                b = im;
            } else {
                im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
            }
            gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        }
    }

在make_convolutional_layer中,workspace_size为该层的size

l.workspace_size = get_workspace_size(l);

4.2 forward_convolutional_layer

此函数运用指针进行卷积运算,其中,featuremap就为指针net.workspace,我们需要找到哪里调用这个函数,从而找到哪里调用net.workspace的值。

//detector.c test_detector
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    char **names = get_labels(name_list);

    image **alphabet = load_alphabet();
    network *net = load_network(cfgfile, weightfile, 0);
    set_batch_network(net, 1);
    srand(2222222);
    double time;
    char buff[256];
    char *input = buff;
    float nms=.45;
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            input = fgets(input, 256, stdin);
            if(!input) return;
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = letterbox_image(im, net->w, net->h);
        layer l = net->layers[net->n-1];

        float *X = sized.data;
        time=what_time_is_it_now();
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
        int nboxes = 0;
        detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
        if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
        draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
        free_detections(dets, nboxes);
        if(outfile){
            save_image(im, outfile);
        }
        else{
            save_image(im, "predictions");
        }
        free_image(im);
        free_image(sized);
        if (filename) break;
    }
}

该函数先创建network,然后读取图片,然后把图片送入network_predict函数中。

// network.c
float *network_predict(network *net, float *input)
{
    network orig = *net;
    net->input = input;
    net->truth = 0;
    net->train = 0;
    net->delta = 0;
    forward_network(net);
    float *out = net->output;
    *net = orig;
    return out;
}


void forward_network(network *netp)
{
    network net = *netp;
    int i;
    for(i = 0; i < net.n; ++i){
        net.index = i;
        layer l = net.layers[i];
        if(l.delta){
            fill_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        l.forward(l, net);
        net.input = l.output;
        if(l.truth) {
            net.truth = l.output;
        }
    }
    calc_network_cost(netp);
}

4.3 一个没有搞懂的语句

//darknet.h中定义的
struct layer{
        void (*forward)   (struct layer, struct network);
}

//network.c中forward_network函数中
l.forward(l, net);

4.4 fill_cpu函数

5.权重与特征表

此表为我们更改结构之后的权重与存储表。

gpu@gpu-SYS-7048GR-TR:/1t_mechan_disk/gpudata/datasets/xxr/yolov3_dbg$ ./darknet detect 
head-hw-v2.cfg obj_9000.weights data/dog.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
Layer size: 18690048
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
Layer size: 24920064
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
Layer size: 12460032
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
Layer size: 6230016
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
Layer size: 3115008
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
Layer size: 1557504
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
Layer size: 3115008
   13 conv   1024  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x1024  3.190 BFLOPs
Layer size: 6230016
   14 conv     30  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x  30  0.010 BFLOPs
Layer size: 692224
   15 detection
mask_scale: Using default '1.000000'
Network workspace 24920064
Loading weights from obj_9000.weights...
Loading weights for conv layer 0...
Weight file location before load weights 16...
biasis num:16,Weights num:432...
Batch normalize and loadscales,rolling_means and variance:48...
Weight file location after load weights 2000...
Loading weights for conv layer 2...
Weight file location before load weights 2000...
biasis num:32,Weights num:4608...
Batch normalize and loadscales,rolling_means and variance:96...
Weight file location after load weights 20944...
Loading weights for conv layer 4...
Weight file location before load weights 20944...
biasis num:64,Weights num:18432...
Batch normalize and loadscales,rolling_means and variance:192...
Weight file location after load weights 95696...
Loading weights for conv layer 6...
Weight file location before load weights 95696...
biasis num:128,Weights num:73728...
Batch normalize and loadscales,rolling_means and variance:384...
Weight file location after load weights 392656...
Loading weights for conv layer 8...
Weight file location before load weights 392656...
biasis num:256,Weights num:294912...
Batch normalize and loadscales,rolling_means and variance:768...
Weight file location after load weights 1576400...
Loading weights for conv layer 10...
Weight file location before load weights 1576400...
biasis num:512,Weights num:1179648...
Batch normalize and loadscales,rolling_means and variance:1536...
Weight file location after load weights 6303184...
Loading weights for conv layer 12...
Weight file location before load weights 6303184...
biasis num:1024,Weights num:4718592...
Batch normalize and loadscales,rolling_means and variance:3072...
Weight file location after load weights 6364744...
Loading weights for conv layer 13...
Weight file location before load weights 6364744...
biasis num:1024,Weights num:9437184...
Batch normalize and loadscales,rolling_means and variance:3072...
Weight file location after load weights 6364744...
Loading weights for conv layer 14...
Weight file location before load weights 6364744...
biasis num:30,Weights num:30720...
Weight file location after load weights 6364744...
Done!
M:16,N:173056,K:27
gemm_nn:A[432],B[4672512],C[2768896]
M:32,N:43264,K:144
gemm_nn:A[4608],B[6230016],C[1384448]
M:64,N:10816,K:288
gemm_nn:A[18432],B[3115008],C[692224]
M:128,N:2704,K:576
gemm_nn:A[73728],B[1557504],C[346112]
M:256,N:676,K:1152
gemm_nn:A[294912],B[778752],C[173056]
M:512,N:169,K:2304
gemm_nn:A[1179648],B[389376],C[86528]
M:1024,N:169,K:4608
gemm_nn:A[4718592],B[778752],C[173056]
M:1024,N:169,K:9216
gemm_nn:A[9437184],B[1557504],C[173056]
M:30,N:169,K:1024
gemm_nn:A[30720],B[173056],C[5070]
data/dog.jpg: Predicted in 1.437287 seconds.

 

相关文章:

YOLOv3:Darknet代码解析(一)安装Darknet

YOLOv3:Darknet代码解析(二)代码初步

YOLOv3:Darknet代码解析(三)卷积操作

YOLOv3:Darknet代码解析(四)结构更改与训练

YOLOv3:Darknet代码解析(五)权重与特征存储

YOLOv3:Darknet代码解析(六)简化的程序与卷积拆分

你可能感兴趣的:(机器学习,c/c++,目标检测)