Redis是互联网技术领域应用非常广泛的存储中间件,它是remote dictionary service的简称,远程字典服务。
Redis 可以做什么?
Redis的业务应用范围非常广泛,让我们以掘金技术社区(juejin.im)的帖子模块为实例,梳理一下,Redis 可以用在哪些地方?
Redis 有 5 种基础数据结构,分别为:string (字符串)、list (列表)、set (集合)、hash (哈希) 和 zset (有序集合)。
字符串 string 是 Redis 最简单的数据结构。Redis 所有的数据结构都是以唯一的 key 字符串作为名称,然后通过这个唯一 key 值来获取相应的 value 数据。不同类型的数据结构的差异就在于 value 的结构不一样。
Redis 的字符串是动态字符串,是可以修改的字符串,内部结构实现上类似于 Java 的 ArrayList
可以对 key 设置过期时间,到点自动删除,这个功能常用来控制缓存的失效时间。
混合使用:
计数,增or减:
Redis 的列表相当于 Java 语言里面的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1)。
当列表弹出了最后一个元素之后,该数据结构自动被删除,内存被回收。
右边进左边出:队列
右边进右边出:栈
Redis 的字典相当于 Java 语言里面的 HashMap,它是无序字典。内部实现结构上同 Java 的 HashMap 也是一致的,同样的数组 + 链表二维结构。第一维 hash 的数组位置碰撞时,就会将碰撞的元素使用链表串接起来。不同的是,Redis 的字典的值只能是字符串,另外它们 rehash 的方式不一样,因为 Java 的 HashMap 在字典很大时,rehash 是个耗时的操作,需要一次性全部 rehash。Redis 为了高性能,不能堵塞服务,所以采用了渐进式 rehash 策略。
有点奇怪,有时候会报错:那是因为book这个变量已经被使用了,通过type book即可知道
Redis 的集合相当于 Java 语言里面的 HashSet,它内部的键值对是无序的唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值NULL
。
zset 可能是 Redis 提供的最为特色的数据结构,它也是在面试中面试官最爱问的数据结构。它类似于 Java 的 SortedSet 和 HashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以给每个 value 赋予一个 score,代表这个 value 的排序权重。
zset 可以用来存粉丝列表,value 值是粉丝的用户 ID,score 是关注时间。我们可以对粉丝列表按关注时间进行排序。
zset 还可以用来存储学生的成绩,value 值是学生的 ID,score 是他的考试成绩。我们可以对成绩按分数进行排序就可以得到他的名次。
list/set/hash/zset 这四种数据结构是容器型数据结构,它们共享下面两条通用规则:
create if not exists
如果容器不存在,那就创建一个,再进行操作。比如 rpush 操作刚开始是没有列表的,Redis 就会自动创建一个,然后再 rpush 进去新元素。
drop if no elements
如果容器里元素没有了,那么立即删除元素,释放内存。这意味着 lpop 操作到最后一个元素,列表就消失了。
Redis 所有的数据结构都可以设置过期时间,时间到了,Redis 会自动删除相应的对象。需要注意的是过期是以对象为单位,比如一个 hash 结构的过期是整个 hash 对象的过期,而不是其中的某个子 key。
还有一个需要特别注意的地方是如果一个字符串已经设置了过期时间,然后你调用了 set 方法修改了它,它的过期时间会消失。
127.0.0.1:6379> set codehole yoyo
OK
127.0.0.1:6379> expire codehole 600
(integer) 1
127.0.0.1:6379> ttl codehole
(integer) 597
127.0.0.1:6379> set codehole yoyo
OK
127.0.0.1:6379> ttl codehole
(integer) -1
分布式锁本质上要实现的目标就是在 Redis 里面占一个“茅坑”,当别的进程也要来占时,发现已经有人蹲在那里了,就只好放弃或者稍后再试。
占坑一般是使用 setnx(set if not exists) 指令,只允许被一个客户端占坑。先来先占, 用完了,再调用 del 指令释放茅坑。
但是有个问题,如果逻辑执行到中间出现异常了,可能会导致 del 指令没有被调用,这样就会陷入死锁,锁永远得不到释放。
于是我们在拿到锁之后,再给锁加上一个过期时间,比如 5s,这样即使中间出现异常也可以保证 5 秒之后锁会自动释放。
但是以上逻辑还有问题。如果在 setnx 和 expire 之间服务器进程突然挂掉了,可能是因为机器掉电或者是被人为杀掉的,就会导致 expire 得不到执行,也会造成死锁。
为了治理这个乱象,Redis 2.8 版本中作者加入了 set 指令的扩展参数,使得 setnx 和 expire 指令可以一起执行,彻底解决了分布式锁的乱象。
上面这个指令就是 setnx 和 expire 组合在一起的原子指令,它就是分布式锁的奥义所在。
Redis 的 list(列表) 数据结构常用来作为异步消息队列使用,使用rpush/lpush
操作入队列,使用lpop 和 rpop
来出队列。
如果队列空了,客户端就会陷入 pop 的死循环,不停地 pop,没有数据,接着再 pop,又没有数据。这就是浪费生命的空轮询。
通常我们使用 sleep 来解决这个问题,让线程睡一会,睡个 1s 钟就可以了。但是会导致消息延迟。
可以通过阻塞读blpop/brpop:
阻塞读在队列没有数据的时候,会立即进入休眠状态,一旦数据到来,则立刻醒过来。消息的延迟几乎为零。用blpop/brpop
替代前面的lpop/rpop
,就完美解决了上面的问题。
空闲连接的问题。
如果线程一直阻塞在哪里,Redis 的客户端连接就成了闲置连接,闲置过久,服务器一般会主动断开连接,减少闲置资源占用。这个时候blpop/brpop
会抛出异常来。
所以编写客户端消费者的时候要小心,注意捕获异常,还要重试。
前面我们讲了分布式锁的问题,但是没有提到客户端在处理请求时加锁没加成功怎么办。一般有 3 种策略来处理加锁失败:
直接抛出特定类型的异常
这种方式比较适合由用户直接发起的请求,用户看到错误对话框后,会先阅读对话框的内容,再点击重试,这样就可以起到人工延时的效果。如果考虑到用户体验,可以由前端的代码替代用户自己来进行延时重试控制。它本质上是对当前请求的放弃,由用户决定是否重新发起新的请求。
sleep
sleep 会阻塞当前的消息处理线程,会导致队列的后续消息处理出现延迟。如果碰撞的比较频繁或者队列里消息比较多,sleep 可能并不合适。如果因为个别死锁的 key 导致加锁不成功,线程会彻底堵死,导致后续消息永远得不到及时处理。
延时队列
这种方式比较适合异步消息处理,将当前冲突的请求扔到另一个队列延后处理以避开冲突。
延时队列可以通过 Redis 的 zset(有序列表) 来实现。我们将消息序列化成一个字符串作为 zset 的value
,这个消息的到期处理时间作为score
,然后用多个线程轮询 zset 获取到期的任务进行处理,多个线程是为了保障可用性,万一挂了一个线程还有其它线程可以继续处理。因为有多个线程,所以需要考虑并发争抢任务,确保任务不能被多次执行。
我们先思考一个常见的业务问题:如果你负责开发维护一个大型的网站,有一天老板找产品经理要网站每个网页每天的 UV 数据,然后让你来开发这个统计模块,你会如何实现?
如果统计 PV 那非常好办,给每个网页一个独立的 Redis 计数器就可以了,这个计数器的 key 后缀加上当天的日期。这样来一个请求,incrby 一次,最终就可以统计出所有的 PV 数据。
但是 UV 不一样,它要去重,同一个用户一天之内的多次访问请求只能计数一次。这就要求每一个网页请求都需要带上用户的 ID,无论是登陆用户还是未登陆用户都需要一个唯一 ID 来标识。
你也许已经想到了一个简单的方案,那就是为每一个页面一个独立的 set 集合来存储所有当天访问过此页面的用户 ID。当一个请求过来时,我们使用 sadd 将用户 ID 塞进去就可以了。通过 scard 可以取出这个集合的大小,这个数字就是这个页面的 UV 数据。没错,这是一个非常简单的方案。
但是,如果你的页面访问量非常大,比如一个爆款页面几千万的 UV,你需要一个很大的 set 集合来统计,这就非常浪费空间。如果这样的页面很多,那所需要的存储空间是惊人的。为这样一个去重功能就耗费这样多的存储空间,值得么?有没有更好的解决方案呢?
这要引入的一个解决方案,Redis 提供了 HyperLogLog 数据结构就是用来解决这种统计问题的。HyperLogLog 提供不精确的去重计数方案,虽然不精确但是也不是非常不精确,标准误差是 0.81%,这样的精确度已经可以满足上面的 UV 统计需求了。
HyperLogLog 数据结构是 Redis 的高级数据结构,它非常有用,但是令人感到意外的是,使用过它的人非常少。
HyperLogLog 提供了两个指令 pfadd 和 pfcount,根据字面意义很好理解,一个是增加计数,一个是获取计数。pfadd 用法和 set 集合的 sadd 是一样的,来一个用户 ID,就将用户 ID 塞进去就是。pfcount 和 scard 用法是一样的,直接获取计数值。
前面我们学会了使用 HyperLogLog 数据结构来进行估数,它非常有价值,可以解决很多精确度不高的统计需求。
但是如果我们想知道某一个值是不是已经在 HyperLogLog 结构里面了,它就无能为力了,它只提供了 pfadd 和 pfcount 方法,没有提供 pfcontains 这种方法。
讲个使用场景,比如我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的?
你会想到服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。问题是当用户量很大,每个用户看过的新闻又很多的情况下,这种方式,推荐系统的去重工作在性能上跟的上么?
实际上,如果历史记录存储在关系数据库里,去重就需要频繁地对数据库进行 exists 查询,当系统并发量很高时,数据库是很难扛住压力的。
你可能又想到了缓存,但是如此多的历史记录全部缓存起来,那得浪费多大存储空间啊?而且这个存储空间是随着时间线性增长,你撑得住一个月,你能撑得住几年么?但是不缓存的话,性能又跟不上,这该怎么办?
这时,布隆过滤器 (Bloom Filter) 闪亮登场了,它就是专门用来解决这种去重问题的。它在起到去重的同时,在空间上还能节省 90% 以上,只是稍微有那么点不精确,也就是有一定的误判概率。
布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率。
当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。打个比方,当它说不认识你时,肯定就不认识;当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见过你。
Redis 官方提供的布隆过滤器到了 Redis 4.0 提供了插件功能之后才正式登场。布隆过滤器作为一个插件加载到 Redis Server 中,给 Redis 提供了强大的布隆去重功能。
下面我们来体验一下 Redis 4.0 的布隆过滤器,为了省去繁琐安装过程,我们直接用 Docker 吧。
> docker pull redislabs/rebloom # 拉取镜像
> docker run -p6379:6379 redislabs/rebloom # 运行容器
> redis-cli # 连接容器中的 redis 服务
如果上面三条指令执行没有问题,下面就可以体验布隆过滤器了。
布隆过滤器有二个基本指令,bf.add
添加元素,bf.exists
查询元素是否存在,它的用法和 set 集合的 sadd 和 sismember 差不多。注意 bf.add
只能一次添加一个元素,如果想要一次添加多个,就需要用到 bf.madd
指令。同样如果需要一次查询多个元素是否存在,就需要用到 bf.mexists
指令。
布隆过滤器的initial_size
估计的过大,会浪费存储空间,估计的过小,就会影响准确率,用户在使用之前一定要尽可能地精确估计好元素数量,还需要加上一定的冗余空间以避免实际元素可能会意外高出估计值很多。
布隆过滤器的error_rate
越小,需要的存储空间就越大,对于不需要过于精确的场合,error_rate
设置稍大一点也无伤大雅。比如在新闻去重上而言,误判率高一点只会让小部分文章不能让合适的人看到,文章的整体阅读量不会因为这点误判率就带来巨大的改变。
Redis 在 3.2 版本以后增加了地理位置 GEO 模块,意味着我们可以使用 Redis 来实现摩拜单车「附近的 Mobike」、美团和饿了么「附近的餐馆」这样的功能了。
如果要计算「附近的人」,也就是给定一个元素的坐标,然后计算这个坐标附近的其它元素,按照距离进行排序,该如何下手?
如果现在元素的经纬度坐标使用关系数据库 (元素 id, 经度 x, 纬度 y) 存储,你该如何计算?
首先,你不可能通过遍历来计算所有的元素和目标元素的距离然后再进行排序,这个计算量太大了,性能指标肯定无法满足。一般的方法都是通过矩形区域来限定元素的数量,然后对区域内的元素进行全量距离计算再排序。这样可以明显减少计算量。如何划分矩形区域呢?可以指定一个半径 r,使用一条 SQL 就可以圈出来。当用户对筛出来的结果不满意,那就扩大半径继续筛选。
select id from positions where x0-r < x < x0+r and y0-r < y < y0+r
为了满足高性能的矩形区域算法,数据表需要在经纬度坐标加上双向复合索引 (x, y),这样可以最大优化查询性能。
但是数据库查询性能毕竟有限,如果「附近的人」查询请求非常多,在高并发场合,这可能并不是一个很好的方案。
业界比较通用的地理位置距离排序算法是 GeoHash 算法,Redis 也使用 GeoHash 算法。GeoHash 算法将二维的经纬度数据映射到一维的整数,这样所有的元素都将在挂载到一条线上,距离靠近的二维坐标映射到一维后的点之间距离也会很接近。当我们想要计算「附近的人时」,首先将目标位置映射到这条线上,然后在这个一维的线上获取附近的点就行了。
那这个映射算法具体是怎样的呢?它将整个地球看成一个二维平面,然后划分成了一系列正方形的方格,就好比围棋棋盘。所有的地图元素坐标都将放置于唯一的方格中。方格越小,坐标越精确。然后对这些方格进行整数编码,越是靠近的方格编码越是接近。那如何编码呢?一个最简单的方案就是切蛋糕法。设想一个正方形的蛋糕摆在你面前,二刀下去均分分成四块小正方形,这四个小正方形可以分别标记为 00,01,10,11 四个二进制整数。然后对每一个小正方形继续用二刀法切割一下,这时每个小小正方形就可以使用 4bit 的二进制整数予以表示。然后继续切下去,正方形就会越来越小,二进制整数也会越来越长,精确度就会越来越高。
上面的例子中使用的是二刀法,真实算法中还会有很多其它刀法,最终编码出来的整数数字也都不一样。
编码之后,每个地图元素的坐标都将变成一个整数,通过这个整数可以还原出元素的坐标,整数越长,还原出来的坐标值的损失程度就越小。对于「附近的人」这个功能而言,损失的一点精确度可以忽略不计。
在使用 Redis 进行 Geo 查询时,我们要时刻想到它的内部结构实际上只是一个 zset(skiplist)。通过 zset 的 score 排序就可以得到坐标附近的其它元素 (实际情况要复杂一些,不过这样理解足够了),通过将 score 还原成坐标值就可以得到元素的原始坐标。
Redis 提供的 Geo 指令只有 6 个,使用时,读者务必再次想起,它只是一个普通的 zset 结构。
增加
geoadd 指令携带集合名称以及多个经纬度名称三元组,注意这里可以加入多个三元组
127.0.0.1:6379> geoadd company 116.48105 39.996794 juejin
(integer) 1
127.0.0.1:6379> geoadd company 116.514203 39.905409 ireader
(integer) 1
127.0.0.1:6379> geoadd company 116.489033 40.007669 meituan
(integer) 1
127.0.0.1:6379> geoadd company 116.562108 39.787602 jd 116.334255 40.027400 xiaomi
(integer) 2
也许你会问为什么 Redis 没有提供 geo 删除指令?前面我们提到 geo 存储结构上使用的是 zset,意味着我们可以使用 zset 相关的指令来操作 geo 数据,所以删除指令可以直接使用 zrem 指令即可。
距离
geodist 指令可以用来计算两个元素之间的距离,携带集合名称、2 个名称和距离单位。
127.0.0.1:6379> geodist company juejin ireader km
"10.5501"
127.0.0.1:6379> geodist company juejin meituan km
"1.3878"
127.0.0.1:6379> geodist company juejin jd km
"24.2739"
127.0.0.1:6379> geodist company juejin xiaomi km
"12.9606"
127.0.0.1:6379> geodist company juejin juejin km
"0.0000"
我们可以看到掘金离美团最近,因为它们都在望京。距离单位可以是 m、km、ml、ft,分别代表米、千米、英里和尺。
获取元素位置
geopos 指令可以获取集合中任意元素的经纬度坐标,可以一次获取多个。
127.0.0.1:6379> geopos company juejin
1) 1) "116.48104995489120483"
2) "39.99679348858259686"
127.0.0.1:6379> geopos company ireader
1) 1) "116.5142020583152771"
2) "39.90540918662494363"
127.0.0.1:6379> geopos company juejin ireader
1) 1) "116.48104995489120483"
2) "39.99679348858259686"
2) 1) "116.5142020583152771"
2) "39.90540918662494363"
我们观察到获取的经纬度坐标和 geoadd 进去的坐标有轻微的误差,原因是 geohash 对二维坐标进行的一维映射是有损的,通过映射再还原回来的值会出现较小的差别。对于「附近的人」这种功能来说,这点误差根本不是事。
获取元素的 hash 值
geohash 可以获取元素的经纬度编码字符串,上面已经提到,它是 base32 编码。
127.0.0.1:6379> geohash company ireader
1) "wx4g52e1ce0"
127.0.0.1:6379> geohash company juejin
1) "wx4gd94yjn0"
附近的公司
georadiusbymember 指令是最为关键的指令,它可以用来查询指定元素附近的其它元素,它的参数非常复杂。
# 范围 20 公里以内最多 3 个元素按距离正排,它不会排除自身
127.0.0.1:6379> georadiusbymember company ireader 20 km count 3 asc
1) "ireader"
2) "juejin"
3) "meituan"
# 范围 20 公里以内最多 3 个元素按距离倒排,排除本身
127.0.0.1:6379> georadiusbymember company ireader 20 km count 3 desc
1) "jd"
2) "meituan"
3) "juejin"
# 三个可选参数 withcoord withdist withhash 用来携带附加参数
# withdist 很有用,它可以用来显示距离
127.0.0.1:6379> georadiusbymember company ireader 20 km withcoord withdist withhash count 3 asc
1) 1) "ireader"
2) "0.0000"
3) (integer) 4069886008361398
4) 1) "116.5142020583152771"
2) "39.90540918662494363"
2) 1) "juejin"
2) "10.5501"
3) (integer) 4069887154388167
4) 1) "116.48104995489120483"
2) "39.99679348858259686"
3) 1) "meituan"
2) "11.5748"
3) (integer) 4069887179083478
4) 1) "116.48903220891952515"
2) "40.00766997707732031"
除了 georadiusbymember 指令根据元素查询附近的元素,Redis 还提供了根据坐标值来查询附近的元素,这个指令更加有用,它可以根据用户的定位来计算「附近的车」,「附近的餐馆」等。它的参数和 georadiusbymember 基本一致,除了将目标元素改成经纬度坐标值。
127.0.0.1:6379> georadius company 116.514202 39.905409 20 km withdist count 3 asc
1) 1) "ireader"
2) "0.0000"
2) 1) "juejin"
2) "10.5501"
3) 1) "meituan"
2) "11.5748"
在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用 Redis 的 Geo 数据结构,它们将全部放在一个 zset 集合中。在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象,影响线上服务的正常运行。
所以,这里建议 Geo 的数据使用单独的 Redis 实例部署,不使用集群环境。
如果数据量过亿甚至更大,就需要对 Geo 数据进行拆分,按国家拆分、按省拆分,按市拆分,在人口特大城市甚至可以按区拆分。这样就可以显著降低单个 zset 集合的大小。
在平时线上 Redis 维护工作中,有时候需要从 Redis 实例成千上万的 key 中找出特定前缀的 key 列表来手动处理数据,可能是修改它的值,也可能是删除 key。这里就有一个问题,如何从海量的 key 中找出满足特定前缀的 key 列表来?
Redis 提供了一个简单暴力的指令 keys
用来列出所有满足特定正则字符串规则的 key。
127.0.0.1:6379> set codehole1 a
OK
127.0.0.1:6379> set codehole2 b
OK
127.0.0.1:6379> set codehole3 c
OK
127.0.0.1:6379> set code1hole a
OK
127.0.0.1:6379> set code2hole b
OK
127.0.0.1:6379> set code3hole b
OK
127.0.0.1:6379> keys *
1) "codehole1"
2) "code3hole"
3) "codehole3"
4) "code2hole"
5) "codehole2"
6) "code1hole"
127.0.0.1:6379> keys codehole*
1) "codehole1"
2) "codehole3"
3) "codehole2"
127.0.0.1:6379> keys code*hole
1) "code3hole"
2) "code2hole"
3) "code1hole"
这个指令使用非常简单,提供一个简单的正则字符串即可,但是有很明显的两个缺点。
面对这两个显著的缺点该怎么办呢?
Redis 为了解决这个问题,它在 2.8 版本中加入了大海捞针的指令——scan
。scan
相比 keys
具备有以下特点:
在使用之前,让我们往 Redis 里插入 10000 条数据来进行测试
import redis
client = redis.StrictRedis()
for i in range(10000):
client.set("key%d" % i, i)
好,Redis 中现在有了 10000 条数据,接下来我们找出以 key99 开头 key 列表。
scan 参数提供了三个参数,第一个是 cursor 整数值
,第二个是 key 的正则模式
,第三个是遍历的 limit hint
。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。
127.0.0.1:6379> scan 0 match key99* count 1000
1) "13976"
2) 1) "key9911"
2) "key9974"
3) "key9994"
4) "key9910"
5) "key9907"
6) "key9989"
7) "key9971"
8) "key99"
9) "key9966"
10) "key992"
11) "key9903"
12) "key9905"
127.0.0.1:6379> scan 13976 match key99* count 1000
1) "1996"
2) 1) "key9982"
2) "key9997"
3) "key9963"
4) "key996"
5) "key9912"
6) "key9999"
7) "key9921"
8) "key994"
9) "key9956"
10) "key9919"
127.0.0.1:6379> scan 1996 match key99* count 1000
1) "12594"
2) 1) "key9939"
2) "key9941"
3) "key9967"
4) "key9938"
5) "key9906"
6) "key999"
7) "key9909"
8) "key9933"
9) "key9992"
......
127.0.0.1:6379> scan 11687 match key99* count 1000
1) "0"
2) 1) "key9969"
2) "key998"
3) "key9986"
4) "key9968"
5) "key9965"
6) "key9990"
7) "key9915"
8) "key9928"
9) "key9908"
10) "key9929"
11) "key9944"
从上面的过程可以看到虽然提供的 limit 是 1000,但是返回的结果只有 10 个左右。因为这个 limit 不是限定返回结果的数量,而是限定服务器单次遍历的字典槽位数量(约等于)。如果将 limit 设置为 10,你会发现返回结果是空的,但是游标值不为零,意味着遍历还没结束。
在 Redis 中所有的 key 都存储在一个很大的字典中,这个字典的结构和 Java 中的 HashMap 一样,是一维数组 + 二维链表结构,第一维数组的大小总是 2^n(n>=0),扩容一次数组大小空间加倍,也就是 n++。
scan 指令返回的游标就是第一维数组的位置索引,我们将这个位置索引称为槽 (slot)。如果不考虑字典的扩容缩容,直接按数组下标挨个遍历就行了。limit 参数就表示需要遍历的槽位数,之所以返回的结果可能多可能少,是因为不是所有的槽位上都会挂接链表,有些槽位可能是空的,还有些槽位上挂接的链表上的元素可能会有多个。每一次遍历都会将 limit 数量的槽位上挂接的所有链表元素进行模式匹配过滤后,一次性返回给客户端。
scan 的遍历顺序非常特别。它不是从第一维数组的第 0 位一直遍历到末尾,而是采用了高位进位加法来遍历。之所以使用这样特殊的方式进行遍历,是考虑到字典的扩容和缩容时避免槽位的遍历重复和遗漏。
首先我们用动画演示一下普通加法和高位进位加法的区别。
从动画中可以看出高位进位法从左边加,进位往右边移动,同普通加法正好相反。但是最终它们都会遍历所有的槽位并且没有重复。
Java 中的 HashMap 有扩容的概念,当 loadFactor 达到阈值时,需要重新分配一个新的 2 倍大小的数组,然后将所有的元素全部 rehash 挂到新的数组下面。rehash 就是将元素的 hash 值对数组长度进行取模运算,因为长度变了,所以每个元素挂接的槽位可能也发生了变化。又因为数组的长度是 2^n 次方,所以取模运算等价于位与操作。
a mod 8 = a & (8-1) = a & 7
a mod 16 = a & (16-1) = a & 15
a mod 32 = a & (32-1) = a & 31
这里的 7, 15, 31 称之为字典的 mask 值,mask 的作用就是保留 hash 值的低位,高位都被设置为 0。
接下来我们看看 rehash 前后元素槽位的变化。
假设当前的字典的数组长度由 8 位扩容到 16 位,那么 3 号槽位 011 将会被 rehash 到 3 号槽位和 11 号槽位,也就是说该槽位链表中大约有一半的元素还是 3 号槽位,其它的元素会放到 11 号槽位,11 这个数字的二进制是 1011,就是对 3 的二进制 011 增加了一个高位 1。
抽象一点说,假设开始槽位的二进制数是 xxx,那么该槽位中的元素将被 rehash 到 0xxx 和 1xxx(xxx+8) 中。 如果字典长度由 16 位扩容到 32 位,那么对于二进制槽位 xxxx 中的元素将被 rehash 到 0xxxx 和 1xxxx(xxxx+16) 中。
观察这张图,我们发现采用高位进位加法的遍历顺序,rehash 后的槽位在遍历顺序上是相邻的。
假设当前要即将遍历 110 这个位置 (橙色),那么扩容后,当前槽位上所有的元素对应的新槽位是 0110 和 1110(深绿色),也就是在槽位的二进制数增加一个高位 0 或 1。这时我们可以直接从 0110 这个槽位开始往后继续遍历,0110 槽位之前的所有槽位都是已经遍历过的,这样就可以避免扩容后对已经遍历过的槽位进行重复遍历。
再考虑缩容,假设当前即将遍历 110 这个位置 (橙色),那么缩容后,当前槽位所有的元素对应的新槽位是 10(深绿色),也就是去掉槽位二进制最高位。这时我们可以直接从 10 这个槽位继续往后遍历,10 槽位之前的所有槽位都是已经遍历过的,这样就可以避免缩容的重复遍历。不过缩容还是不太一样,它会对图中 010 这个槽位上的元素进行重复遍历,因为缩融后 10 槽位的元素是 010 和 110 上挂接的元素的融合。
Java 的 HashMap 在扩容时会一次性将旧数组下挂接的元素全部转移到新数组下面。如果 HashMap 中元素特别多,线程就会出现卡顿现象。Redis 为了解决这个问题,它采用渐进式 rehash。
它会同时保留旧数组和新数组,然后在定时任务中以及后续对 hash 的指令操作中渐渐地将旧数组中挂接的元素迁移到新数组上。这意味着要操作处于 rehash 中的字典,需要同时访问新旧两个数组结构。如果在旧数组下面找不到元素,还需要去新数组下面去寻找。
scan 也需要考虑这个问题,对与 rehash 中的字典,它需要同时扫描新旧槽位,然后将结果融合后返回给客户端。
scan 指令是一系列指令,除了可以遍历所有的 key 之外,还可以对指定的容器集合进行遍历。比如 zscan 遍历 zset 集合元素,hscan 遍历 hash 字典的元素、sscan 遍历 set 集合的元素。
它们的原理同 scan 都会类似的,因为 hash 底层就是字典,set 也是一个特殊的 hash(所有的 value 指向同一个元素),zset 内部也使用了字典来存储所有的元素内容。
有时候会因为业务人员使用不当,在 Redis 实例中会形成很大的对象,比如一个很大的 hash,一个很大的 zset 这都是经常出现的。这样的对象对 Redis 的集群数据迁移带来了很大的问题,因为在集群环境下,如果某个 key 太大,会数据导致迁移卡顿。另外在内存分配上,如果一个 key 太大,那么当它需要扩容时,会一次性申请更大的一块内存,这也会导致卡顿。如果这个大 key 被删除,内存会一次性回收,卡顿现象会再一次产生。
在平时的业务开发中,要尽量避免大 key 的产生。
如果你观察到 Redis 的内存大起大落,这极有可能是因为大 key 导致的,这时候你就需要定位出具体是那个 key,进一步定位出具体的业务来源,然后再改进相关业务代码设计。
那如何定位大 key 呢?
为了避免对线上 Redis 带来卡顿,这就要用到 scan 指令,对于扫描出来的每一个 key,使用 type 指令获得 key 的类型,然后使用相应数据结构的 size 或者 len 方法来得到它的大小,对于每一种类型,保留大小的前 N 名作为扫描结果展示出来。
上面这样的过程需要编写脚本,比较繁琐,不过 Redis 官方已经在 redis-cli 指令中提供了这样的扫描功能,我们可以直接拿来即用。
redis-cli -h 127.0.0.1 -p 7001 –-bigkeys
如果你担心这个指令会大幅抬升 Redis 的 ops 导致线上报警,还可以增加一个休眠参数。
redis-cli -h 127.0.0.1 -p 7001 –-bigkeys -i 0.1
上面这个指令每隔 100 条 scan 指令就会休眠 0.1s,ops 就不会剧烈抬升,但是扫描的时间会变长。
Redis 是个单线程程序!这点必须铭记。
也许你会怀疑高并发的 Redis 中间件怎么可能是单线程。很抱歉,它就是单线程,你的怀疑暴露了你基础知识的不足。莫要瞧不起单线程,除了 Redis 之外,Node.js 也是单线程,Nginx 也是单线程,但是它们都是服务器高性能的典范。
Redis 单线程为什么还能这么快?
因为它所有的数据都在内存中,所有的运算都是内存级别的运算。正因为 Redis 是单线程,所以要小心使用 Redis 指令,对于那些时间复杂度为 O(n) 级别的指令,一定要谨慎使用,一不小心就可能会导致 Redis 卡顿。
当我们调用套接字的读写方法,默认它们是阻塞的,比如read
方法要传递进去一个参数n
,表示最多读取这么多字节后再返回,如果一个字节都没有,那么线程就会卡在那里,直到新的数据到来或者连接关闭了,read
方法才可以返回,线程才能继续处理。而write
方法一般来说不会阻塞,除非内核为套接字分配的写缓冲区已经满了,write
方法就会阻塞,直到缓存区中有空闲空间挪出来了。
非阻塞 IO 在套接字对象上提供了一个选项Non_Blocking
,当这个选项打开时,读写方法不会阻塞,而是能读多少读多少,能写多少写多少。能读多少取决于内核为套接字分配的读缓冲区内部的数据字节数,能写多少取决于内核为套接字分配的写缓冲区的空闲空间字节数。读方法和写方法都会通过返回值来告知程序实际读写了多少字节。
有了非阻塞 IO 意味着线程在读写 IO 时可以不必再阻塞了,读写可以瞬间完成然后线程可以继续干别的事了。
非阻塞 IO 有个问题,那就是线程要读数据,结果读了一部分就返回了,线程如何知道何时才应该继续读。也就是当数据到来时,线程如何得到通知。写也是一样,如果缓冲区满了,写不完,剩下的数据何时才应该继续写,线程也应该得到通知。
事件轮询 API 就是用来解决这个问题的,最简单的事件轮询 API 是select
函数,它是操作系统提供给用户程序的 API。输入是读写描述符列表read_fds & write_fds
,输出是与之对应的可读可写事件。同时还提供了一个timeout
参数,如果没有任何事件到来,那么就最多等待timeout
时间,线程处于阻塞状态。一旦期间有任何事件到来,就可以立即返回。时间过了之后还是没有任何事件到来,也会立即返回。拿到事件后,线程就可以继续挨个处理相应的事件。处理完了继续过来轮询。于是线程就进入了一个死循环,我们把这个死循环称为事件循环,一个循环为一个周期。
每个客户端套接字socket
都有对应的读写文件描述符。
read_events, write_events = select(read_fds, write_fds, timeout)
for event in read_events:
handle_read(event.fd)
for event in write_events:
handle_write(event.fd)
handle_others() # 处理其它事情,如定时任务等
因为我们通过select
系统调用同时处理多个通道描述符的读写事件,因此我们将这类系统调用称为多路复用 API。现代操作系统的多路复用 API 已经不再使用select
系统调用,而改用epoll(linux)
和kqueue(freebsd & macosx)
,因为 select 系统调用的性能在描述符特别多时性能会非常差。它们使用起来可能在形式上略有差异,但是本质上都是差不多的,都可以使用上面的伪代码逻辑进行理解。
服务器套接字serversocket
对象的读操作是指调用accept
接受客户端新连接。何时有新连接到来,也是通过select
系统调用的读事件来得到通知的。
事件轮询 API 就是 Java 语言里面的 NIO 技术
Java 的 NIO 并不是 Java 特有的技术,其它计算机语言都有这个技术,只不过换了一个词汇,不叫 NIO 而已。
Redis 会将每个客户端套接字都关联一个指令队列。客户端的指令通过队列来排队进行顺序处理,先到先服务。
Redis 同样也会为每个客户端套接字关联一个响应队列。Redis 服务器通过响应队列来将指令的返回结果回复给客户端。 如果队列为空,那么意味着连接暂时处于空闲状态,不需要去获取写事件,也就是可以将当前的客户端描述符从write_fds
里面移出来。等到队列有数据了,再将描述符放进去。避免select
系统调用立即返回写事件,结果发现没什么数据可以写。出这种情况的线程会飙高 CPU。
服务器处理要响应 IO 事件外,还要处理其它事情。比如定时任务就是非常重要的一件事。如果线程阻塞在 select 系统调用上,定时任务将无法得到准时调度。那 Redis 是如何解决这个问题的呢?
Redis 的定时任务会记录在一个称为最小堆
的数据结构中。这个堆中,最快要执行的任务排在堆的最上方。在每个循环周期,Redis 都会将最小堆里面已经到点的任务立即进行处理。处理完毕后,将最快要执行的任务还需要的时间记录下来,这个时间就是select
系统调用的timeout
参数。因为 Redis 知道未来timeout
时间内,没有其它定时任务需要处理,所以可以安心睡眠timeout
的时间。
Nginx 和 Node 的事件处理原理和 Redis 也是类似的
Redis 的作者认为数据库系统的瓶颈一般不在于网络流量,而是数据库自身内部逻辑处理上。所以即使 Redis 使用了浪费流量的文本协议,依然可以取得极高的访问性能。Redis 将所有数据都放在内存,用一个单线程对外提供服务,单个节点在跑满一个 CPU 核心的情况下可以达到了 10w/s 的超高 QPS。
RESP 是 Redis 序列化协议的简写。它是一种直观的文本协议,优势在于实现异常简单,解析性能极好。
Redis 协议将传输的结构数据分为 5 种最小单元类型,单元结束时统一加上回车换行符号\r\n
。
+
符号开头。$
符号开头,后跟字符串长度。:
符号开头,后跟整数的字符串形式。-
符号开头。*
号开头,后跟数组的长度。单行字符串 hello world
+hello world\r\n
多行字符串 hello world
$11\r\nhello world\r\n
多行字符串当然也可以表示单行字符串。
整数 1024
:1024\r\n
错误 参数类型错误
-WRONGTYPE Operation against a key holding the wrong kind of value\r\n
数组 [1,2,3]
*3\r\n:1\r\n:2\r\n:3\r\n
NULL 用多行字符串表示,不过长度要写成-1。
$-1\r\n
空串 用多行字符串表示,长度填 0。
$0\r\n\r\n
注意这里有两个\r\n
。为什么是两个?因为两个\r\n
之间,隔的是空串。
客户端向服务器发送的指令只有一种格式,多行字符串数组。比如一个简单的 set 指令set author codehole
会被序列化成下面的字符串。
*3\r\n$3\r\nset\r\n$6\r\nauthor\r\n$8\r\ncodehole\r\n
在控制台输出这个字符串如下,可以看出这是很好阅读的一种格式。
*3
$3
set
$6
author
$8
codehole
服务器向客户端回复的响应要支持多种数据结构,所以消息响应在结构上要复杂不少。不过再复杂的响应消息也是以上 5 中基本类型的组合。
单行字符串响应
127.0.0.1:6379> set author codehole
OK
这里的 OK 就是单行响应,没有使用引号括起来。
+OK
错误响应
127.0.0.1:6379> incr author
(error) ERR value is not an integer or out of range
试图对一个字符串进行自增,服务器抛出一个通用的错误。
-ERR value is not an integer or out of range
整数响应
127.0.0.1:6379> incr books
(integer) 1
这里的1
就是整数响应
:1
多行字符串响应
127.0.0.1:6379> get author
"codehole"
这里使用双引号括起来的字符串就是多行字符串响应
$8
codehole
数组响应
127.0.0.1:6379> hset info name laoqian
(integer) 1
127.0.0.1:6379> hset info age 30
(integer) 1
127.0.0.1:6379> hset info sex male
(integer) 1
127.0.0.1:6379> hgetall info
1) "name"
2) "laoqian"
3) "age"
4) "30"
5) "sex"
6) "male"
这里的 hgetall 命令返回的就是一个数组,第 0|2|4 位置的字符串是 hash 表的 key,第 1|3|5 位置的字符串是 value,客户端负责将数组组装成字典再返回。
*6
$4
name
$6
laoqian
$3
age
$2
30
$3
sex
$4
male
嵌套
127.0.0.1:6379> scan 0
1) "0"
2) 1) "info"
2) "books"
3) "author"
scan 命令用来扫描服务器包含的所有 key 列表,它是以游标的形式获取,一次只获取一部分。
scan 命令返回的是一个嵌套数组。数组的第一个值表示游标的值,如果这个值为零,说明已经遍历完毕。如果不为零,使用这个值作为 scan 命令的参数进行下一次遍历。数组的第二个值又是一个数组,这个数组就是 key 列表。
*2
$1
0
*3
$4
info
$5
books
$6
author
Redis 协议里有大量冗余的回车换行符,但是这不影响它成为互联网技术领域非常受欢迎的一个文本协议。有很多开源项目使用 RESP 作为它的通讯协议。在技术领域性能并不总是一切,还有简单性、易理解性和易实现性,这些都需要进行适当权衡。
Redis 的数据全部在内存里,如果突然宕机,数据就会全部丢失,因此必须有一种机制来保证 Redis 的数据不会因为故障而丢失,这种机制就是 Redis 的持久化机制。
Redis 的持久化机制有两种,第一种是快照,第二种是 AOF 日志。快照是一次全量备份,AOF 日志是连续的增量备份。快照是内存数据的二进制序列化形式,在存储上非常紧凑,而 AOF 日志记录的是内存数据修改的指令记录文本。AOF 日志在长期的运行过程中会变的无比庞大,数据库重启时需要加载 AOF 日志进行指令重放,这个时间就会无比漫长。所以需要定期进行 AOF 重写,给 AOF 日志进行瘦身。
我们知道 Redis 是单线程程序,这个线程要同时负责多个客户端套接字的并发读写操作和内存数据结构的逻辑读写。
在服务线上请求的同时,Redis 还需要进行内存快照,内存快照要求 Redis 必须进行文件 IO 操作,可文件 IO 操作是不能使用多路复用 API。
这意味着单线程同时在服务线上的请求还要进行文件 IO 操作,文件 IO 操作会严重拖垮服务器请求的性能。还有个重要的问题是为了不阻塞线上的业务,就需要边持久化边响应客户端请求。持久化的同时,内存数据结构还在改变,比如一个大型的 hash 字典正在持久化,结果一个请求过来把它给删掉了,还没持久化完呢,这尼玛要怎么搞?
那该怎么办呢?
Redis 使用操作系统的多进程 COW(Copy On Write) 机制来实现快照持久化,这个机制很有意思,也很少人知道。多进程 COW 也是鉴定程序员知识广度的一个重要指标。
Redis 在持久化时会调用 glibc 的函数fork
产生一个子进程,快照持久化完全交给子进程来处理,父进程继续处理客户端请求。子进程刚刚产生时,它和父进程共享内存里面的代码段和数据段。这时你可以将父子进程想像成一个连体婴儿,共享身体。这是 Linux 操作系统的机制,为了节约内存资源,所以尽可能让它们共享起来。在进程分离的一瞬间,内存的增长几乎没有明显变化。
用 Python 语言描述进程分离的逻辑如下。fork
函数会在父子进程同时返回,在父进程里返回子进程的 pid,在子进程里返回零。如果操作系统内存资源不足,pid 就会是负数,表示fork
失败。
pid = os.fork()
if pid > 0:
handle_client_requests() # 父进程继续处理客户端请求
if pid == 0:
handle_snapshot_write() # 子进程处理快照写磁盘
if pid < 0:
# fork error
子进程做数据持久化,它不会修改现有的内存数据结构,它只是对数据结构进行遍历读取,然后序列化写到磁盘中。但是父进程不一样,它必须持续服务客户端请求,然后对内存数据结构进行不间断的修改。
重点::这个时候就会使用操作系统的 COW 机制来进行数据段页面的分离。数据段是由很多操作系统的页面组合而成,当父进程对其中一个页面的数据进行修改时,会将被共享的页面复制一份分离出来,然后对这个复制的页面进行修改。这时子进程相应的页面是没有变化的,还是进程产生时那一瞬间的数据。
随着父进程修改操作的持续进行,越来越多的共享页面被分离出来,内存就会持续增长。但是也不会超过原有数据内存的 2 倍大小。另外一个 Redis 实例里冷数据占的比例往往是比较高的,所以很少会出现所有的页面都会被分离,被分离的往往只有其中一部分页面。每个页面的大小只有 4K,一个 Redis 实例里面一般都会有成千上万的页面。
子进程因为数据没有变化,它能看到的内存里的数据在进程产生的一瞬间就凝固了,再也不会改变,这也是为什么 Redis 的持久化叫「快照」的原因。接下来子进程就可以非常安心的遍历数据了进行序列化写磁盘了。
AOF 日志存储的是 Redis 服务器的顺序指令序列,AOF 日志只记录对内存进行修改的指令记录。
假设 AOF 日志记录了自 Redis 实例创建以来所有的修改性指令序列,那么就可以通过对一个空的 Redis 实例顺序执行所有的指令,也就是「重放」,来恢复 Redis 当前实例的内存数据结构的状态。(恢复的过程)
Redis 会在收到客户端修改指令后,进行参数校验进行逻辑处理后,如果没问题,就立即将该指令文本存储到 AOF 日志中,也就是先执行指令才将日志存盘。这点不同于leveldb、hbase等存储引擎,它们都是先存储日志再做逻辑处理。
Redis 在长期运行的过程中,AOF 的日志会越变越长。如果实例宕机重启,重放整个 AOF 日志会非常耗时,导致长时间 Redis 无法对外提供服务。所以需要对 AOF 日志瘦身。
Redis 提供了 bgrewriteaof 指令用于对 AOF 日志进行瘦身。其原理就是开辟一个子进程对内存进行遍历转换成一系列 Redis 的操作指令,序列化到一个新的 AOF 日志文件中。序列化完毕后再将操作期间发生的增量 AOF 日志追加到这个新的 AOF 日志文件中,追加完毕后就立即替代旧的 AOF 日志文件了,瘦身工作就完成了。
AOF 日志是以文件的形式存在的,当程序对 AOF 日志文件进行写操作时,实际上是将内容写到了内核为文件描述符分配的一个内存缓存中,然后内核会异步将脏数据刷回到磁盘的。
这就意味着如果机器突然宕机,AOF 日志内容可能还没有来得及完全刷到磁盘中,这个时候就会出现日志丢失。那该怎么办?
Linux 的glibc
提供了fsync(int fd)
函数可以将指定文件的内容强制从内核缓存刷到磁盘。只要 Redis 进程实时调用 fsync 函数就可以保证 aof 日志不丢失。但是 fsync 是一个磁盘 IO 操作,它很慢!如果 Redis 执行一条指令就要 fsync 一次,那么 Redis 高性能的地位就不保了。
所以在生产环境的服务器中,Redis 通常是每隔 1s 左右执行一次 fsync 操作,周期 1s 是可以配置的。这是在数据安全性和性能之间做了一个折中,在保持高性能的同时,尽可能使得数据少丢失。
Redis 同样也提供了另外两种策略,一个是永不 fsync——让操作系统来决定何时同步磁盘,很不安全,另一个是来一个指令就 fsync 一次——非常慢。但是在生产环境基本不会使用,了解一下即可。
快照是通过开启子进程的方式进行的,它是一个比较耗资源的操作。
所以通常 Redis 的主节点是不会进行持久化操作,持久化操作主要在从节点进行。从节点是备份节点,没有来自客户端请求的压力,它的操作系统资源往往比较充沛。
但是如果出现网络分区,从节点长期连不上主节点,就会出现数据不一致的问题,特别是在网络分区出现的情况下又不小心主节点宕机了,那么数据就会丢失,所以在生产环境要做好实时监控工作,保证网络畅通或者能快速修复。另外还应该再增加一个从节点以降低网络分区的概率,只要有一个从节点数据同步正常,数据也就不会轻易丢失。
重启 Redis 时,我们很少使用 rdb 来恢复内存状态,因为会丢失大量数据。我们通常使用 AOF 日志重放,但是重放 AOF 日志性能相对 rdb 来说要慢很多,这样在 Redis 实例很大的情况下,启动需要花费很长的时间。
Redis 4.0 为了解决这个问题,带来了一个新的持久化选项——混合持久化。将 rdb 文件的内容和增量的 AOF 日志文件存在一起。这里的 AOF 日志不再是全量的日志,而是自持久化开始到持久化结束的这段时间发生的增量 AOF 日志,通常这部分 AOF 日志很小。
于是在 Redis 重启的时候,可以先加载 rdb 的内容,然后再重放增量 AOF 日志就可以完全替代之前的 AOF 全量文件重放,重启效率因此大幅得到提升。
大多数同学一直以来对 Redis 管道有一个误解,他们以为这是 Redis 服务器提供的一种特别的技术,有了这种技术就可以加速 Redis 的存取效率。但是实际上 Redis 管道 (Pipeline) 本身并不是 Redis 服务器直接提供的技术,这个技术本质上是由客户端提供的,跟服务器没有什么直接的关系。下面我们对这块做一个深入探究。
当我们使用客户端对 Redis 进行一次操作时,如下图所示,客户端将请求传送给服务器,服务器处理完毕后,再将响应回复给客户端。这要花费一个网络数据包来回的时间。
如果连续执行多条指令,那就会花费多个网络数据包来回的时间。如下图所示。
回到客户端代码层面,客户端是经历了写-读-写-读四个操作才完整地执行了两条指令。
现在如果我们调整读写顺序,改成写—写-读-读,这两个指令同样可以正常完成。
两个连续的写操作和两个连续的读操作总共只会花费一次网络来回,就好比连续的 write 操作合并了,连续的 read 操作也合并了一样。
这便是管道操作的本质,服务器根本没有任何区别对待,还是收到一条消息,执行一条消息,回复一条消息的正常的流程。客户端通过对管道中的指令列表改变读写顺序就可以大幅节省 IO 时间。管道中指令越多,效果越好。
接下来我们实践一下管道的力量。
Redis 自带了一个压力测试工具redis-benchmark
,使用这个工具就可以进行管道测试。
首先我们对一个普通的 set 指令进行压测,QPS 大约 5w/s。
> redis-benchmark -t set -q
SET: 51975.05 requests per second
我们加入管道选项-P
参数,它表示单个管道内并行的请求数量,看下面P=2
,QPS 达到了 9w/s。
> redis-benchmark -t set -P 2 -q
SET: 91240.88 requests per second
再看看P=3
,QPS 达到了 10w/s。
SET: 102354.15 requests per second
但如果再继续提升 P 参数,发现 QPS 已经上不去了。这是为什么呢?
因为这里 CPU 处理能力已经达到了瓶颈,Redis 的单线程 CPU 已经飙到了 100%,所以无法再继续提升了。
接下来我们深入分析一个请求交互的流程,真实的情况是它很复杂,因为要经过网络协议栈,这个就得深入内核了。
上图就是一个完整的请求交互流程图。我用文字来仔细描述一遍:
write
将消息写到操作系统内核为套接字分配的发送缓冲send buffer
。recv buffer
。read
从接收缓冲中取出消息进行处理。write
将响应消息写到内核为套接字分配的发送缓冲send buffer
。recv buffer
。read
从接收缓冲中取出消息返回给上层业务逻辑进行处理。其中步骤 5~8 和 1~4 是一样的,只不过方向是反过来的,一个是请求,一个是响应。
我们开始以为 write
操作是要等到对方收到消息才会返回,但实际上不是这样的。write
操作只负责将数据写到本地操作系统内核的发送缓冲然后就返回了。剩下的事交给操作系统内核异步将数据送到目标机器。但是如果发送缓冲满了,那么就需要等待缓冲空出空闲空间来,这个就是写操作 IO 操作的真正耗时。
我们开始以为 read
操作是从目标机器拉取数据,但实际上不是这样的。read
操作只负责将数据从本地操作系统内核的接收缓冲中取出来就了事了。但是如果缓冲是空的,那么就需要等待数据到来,这个就是读操作 IO 操作的真正耗时。
所以对于value = redis.get(key)
这样一个简单的请求来说,write
操作几乎没有耗时,直接写到发送缓冲就返回,而read
就会比较耗时了,因为它要等待消息经过网络路由到目标机器处理后的响应消息,再回送到当前的内核读缓冲才可以返回。这才是一个网络来回的真正开销。
而对于管道来说,连续的write
操作根本就没有耗时,之后第一个read
操作会等待一个网络的来回开销,然后所有的响应消息就都已经回送到内核的读缓冲了,后续的 read
操作直接就可以从缓冲拿到结果,瞬间就返回了。
关于管道
1:不是什么Redis特有的技术
2:本质节省的是网络响应的时间开销,客户端一次发送多条命令,服务端照常一条一条处理,不过客户端等待响应读取数据的时间少了
3:之所以能节省网络响应的时间开销,在于客户端读写的本质,是和本地操作系统内核打交道,写几乎不耗时,读需要等待响应耗时
管道理解就是好比网购,买多件东西分开下单,会比较慢,假如一次下单买多个就比较快,而write好比是下单操作或是卖家发货很快,read好比是收快递,耗时的是快递传送过程
为了确保连续多个操作的原子性,一个成熟的数据库通常都会有事务支持,Redis 也不例外。Redis 的事务使用非常简单,不同于关系数据库,我们无须理解那么多复杂的事务模型,就可以直接使用。不过也正是因为这种简单性,它的事务模型很不严格,这要求我们不能像使用关系数据库的事务一样来使用 Redis。
每个事务的操作都有 begin、commit 和 rollback,begin 指示事务的开始,commit 指示事务的提交,rollback 指示事务的回滚。它大致的形式如下。
begin();
try {
command1();
command2();
....
commit();
} catch(Exception e) {
rollback();
}
Redis 在形式上看起来也差不多,分别是 multi/exec/discard。multi 指示事务的开始,exec 指示事务的执行,discard 指示事务的丢弃。
> multi
OK
> incr books
QUEUED
> incr books
QUEUED
> exec
(integer) 1
(integer) 2
上面的指令演示了一个完整的事务过程,所有的指令在 exec 之前不执行,而是缓存在服务器的一个事务队列中,服务器一旦收到 exec 指令,才开执行整个事务队列,执行完毕后一次性返回所有指令的运行结果。因为 Redis 的单线程特性,它不用担心自己在执行队列的时候被其它指令打搅,可以保证他们能得到的「原子性」执行。
QUEUED 是一个简单字符串,同 OK 是一个形式,它表示指令已经被服务器缓存到队列里了。
事务的原子性是指要么事务全部成功,要么全部失败,那么 Redis 事务执行是原子性的么?
下面我们来看一个特别的例子。
> multi
OK
> set books iamastring
QUEUED
> incr books
QUEUED
> set poorman iamdesperate
QUEUED
> exec
1) OK
2) (error) ERR value is not an integer or out of range
3) OK
> get books
"iamastring"
> get poorman
"iamdesperate
上面的例子是事务执行到中间遇到失败了,因为我们不能对一个字符串进行数学运算,事务在遇到指令执行失败后,后面的指令还继续执行,所以 poorman 的值能继续得到设置。
到这里,你应该明白 Redis 的事务根本不能算「原子性」,而仅仅是满足了事务的「隔离性」,隔离性中的串行化——当前执行的事务有着不被其它事务打断的权利。
Redis 为事务提供了一个 discard 指令,用于丢弃事务缓存队列中的所有指令,在 exec 执行之前。
> get books
(nil)
> multi
OK
> incr books
QUEUED
> incr books
QUEUED
> discard
OK
> get books
(nil)
我们可以看到 discard 之后,队列中的所有指令都没执行,就好像 multi 和 discard 中间的所有指令从未发生过一样。
上面的 Redis 事务在发送每个指令到事务缓存队列时都要经过一次网络读写,当一个事务内部的指令较多时,需要的网络 IO 时间也会线性增长。所以通常 Redis 的客户端在执行事务时都会结合 pipeline 一起使用,这样可以将多次 IO 操作压缩为单次 IO 操作。比如我们在使用 Python 的 Redis 客户端时执行事务时是要强制使用 pipeline 的。
pipe = redis.pipeline(transaction=true)
pipe.multi()
pipe.incr("books")
pipe.incr("books")
values = pipe.execute()
考虑到一个业务场景,Redis 存储了我们的账户余额数据,它是一个整数。现在有两个并发的客户端要对账户余额进行修改操作,这个修改不是一个简单的 incrby 指令,而是要对余额乘以一个倍数。Redis 可没有提供 multiplyby 这样的指令。我们需要先取出余额然后在内存里乘以倍数,再将结果写回 Redis。
这就会出现并发问题,因为有多个客户端会并发进行操作。我们可以通过 Redis 的分布式锁来避免冲突,这是一个很好的解决方案。分布式锁是一种悲观锁,那是不是可以使用乐观锁的方式来解决冲突呢?
Redis 提供了这种 watch 的机制,它就是一种乐观锁。有了 watch 我们又多了一种可以用来解决并发修改的方法。 watch 的使用方式如下:
while True:
do_watch()
commands()
multi()
send_commands()
try:
exec()
break
except WatchError:
continue
watch 会在事务开始之前盯住 1 个或多个关键变量,当事务执行时,也就是服务器收到了 exec 指令要顺序执行缓存的事务队列时,Redis 会检查关键变量自 watch 之后,是否被修改了 (包括当前事务所在的客户端)。如果关键变量被人动过了,exec 指令就会返回 null 回复告知客户端事务执行失败,这个时候客户端一般会选择重试。
> watch books
OK
> incr books # 被修改了
(integer) 1
> multi
OK
> incr books
QUEUED
> exec # 事务执行失败
(nil)
当服务器给 exec 指令返回一个 null 回复时,客户端知道了事务执行是失败的,通常客户端 (redis-py) 都会抛出一个 WatchError 这种错误,不过也有些语言 (jedis) 不会抛出异常,而是通过在 exec 方法里返回一个 null,这样客户端需要检查一下返回结果是否为 null 来确定事务是否执行失败。
注意事项
Redis 禁止在 multi 和 exec 之间执行 watch 指令,而必须在 multi 之前做好盯住关键变量,否则会出错。
接下来我们使用 Python 语言来实现对余额的加倍操作。
# -*- coding: utf-8
import redis
def key_for(user_id):
return "account_{}".format(user_id)
def double_account(client, user_id):
key = key_for(user_id)
while True:
client.watch(key)
value = int(client.get(key))
value *= 2 # 加倍
pipe = client.pipeline(transaction=True)
pipe.multi()
pipe.set(key, value)
try:
pipe.execute()
break # 总算成功了
except redis.WatchError:
continue # 事务被打断了,重试
return int(client.get(key)) # 重新获取余额
client = redis.StrictRedis()
user_id = "abc"
client.setnx(key_for(user_id), 5) # setnx 做初始化
print double_account(client, user_id)
下面我们再使用 Java 语言实现一遍。
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Transaction;
public class TransactionDemo {
public static void main(String[] args) {
Jedis jedis = new Jedis();
String userId = "abc";
String key = keyFor(userId);
jedis.setnx(key, String.valueOf(5)); # setnx 做初始化
System.out.println(doubleAccount(jedis, userId));
jedis.close();
}
public static int doubleAccount(Jedis jedis, String userId) {
String key = keyFor(userId);
while (true) {
jedis.watch(key);
int value = Integer.parseInt(jedis.get(key));
value *= 2; // 加倍
Transaction tx = jedis.multi();
tx.set(key, String.valueOf(value));
List
前面我们讲了 Redis 消息队列的使用方法,但是没有提到 Redis 消息队列的不足之处,那就是它不支持消息的多播机制。
消息多播允许生产者生产一次消息,中间件负责将消息复制到多个消息队列,每个消息队列由相应的消费组进行消费。它是分布式系统常用的一种解耦方式,用于将多个消费组的逻辑进行拆分。支持了消息多播,多个消费组的逻辑就可以放到不同的子系统中。
如果是普通的消息队列,就得将多个不同的消费组逻辑串接起来放在一个子系统中,进行连续消费。
为了支持消息多播,Redis 不能再依赖于那 5 种基本数据类型了。它单独使用了一个模块来支持消息多播,这个模块的名字叫着 PubSub,也就是 PublisherSubscriber,发布者订阅者模型。我们使用 Python 语言来演示一下 PubSub 如何使用。
# -*- coding: utf-8 -*-
import time
import redis
client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
time.sleep(1)
print p.get_message()
client.publish("codehole", "java comes")
time.sleep(1)
print p.get_message()
client.publish("codehole", "python comes")
time.sleep(1)
print p.get_message()
print p.get_message()
{'pattern': None, 'type': 'subscribe', 'channel': 'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'python comes'}
None
客户端发起订阅命令后,Redis 会立即给予一个反馈消息通知订阅成功。因为有网络传输延迟,在subscribe
命令发出后,需要休眠一会,再通过 get\_message
才能拿到反馈消息。客户端接下来执行发布命令,发布了一条消息。同样因为网络延迟,在 publish
命令发出后,需要休眠一会,再通过get\_message
才能拿到发布的消息。如果当前没有消息,get\_message
会返回空,告知当前没有消息,所以它不是阻塞的。
Redis PubSub 的生产者和消费者是不同的连接,也就是上面这个例子实际上使用了两个 Redis 的连接。这是必须的,因为 Redis 不允许连接在 subscribe 等待消息时还要进行其它的操作。
在生产环境中,我们很少将生产者和消费者放在同一个线程里。如果它们真要在同一个线程里,何必通过中间件来流转,直接使用函数调用就行。所以我们应该将生产者和消费者分离,接下来我们看看分离后的代码要怎么写。
消费者
# -*- coding: utf-8 -*-
import time
import redis
client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
while True:
msg = p.get_message()
if not msg:
time.sleep(1)
continue
print msg
生产者
# -*- coding: utf-8 -*-
import redis
client = redis.StrictRedis()
client.publish("codehole", "python comes")
client.publish("codehole", "java comes")
client.publish("codehole", "golang comes")
必须先启动消费者,然后再执行生产者,消费者我们可以启动多个,pubsub 会保证它们收到的是相同的消息序列。
{'pattern': None, 'type': 'subscribe', 'channel': 'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'python comes'}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'golang comes'}
我们从消费者的控制台窗口可以看到上面的输出,每个消费者窗口都是同样的输出。第一行是订阅成功消息,它很快就会输出,后面的三行会在生产者进程执行的时候立即输出。 上面的消费者是通过轮询get_message
来收取消息的,如果收取不到就休眠 1s。这让我们想起了第 3 节的消息队列模型,我们使用 blpop 来代替休眠来提高消息处理的及时性。
PubSub 的消费者如果使用休眠的方式来轮询消息,也会遭遇消息处理不及时的问题。不过我们可以使用 listen 来阻塞监听消息来进行处理,这点同 blpop 原理是一样的。下面我们改造一下消费者
阻塞消费者
# -*- coding: utf-8 -*-
import time
import redis
client = redis.StrictRedis()
p = client.pubsub()
p.subscribe("codehole")
for msg in p.listen():
print msg
上面提到的订阅模式是基于名称订阅的,消费者订阅一个主题是必须明确指定主题的名称。如果我们想要订阅多个主题,那就 subscribe 多个名称。
> subscribe codehole.image codehole.text codehole.blog # 同时订阅三个主题,会有三条订阅成功反馈信息
1) "subscribe"
2) "codehole.image"
3) (integer) 1
1) "subscribe"
2) "codehole.text"
3) (integer) 2
1) "subscribe"
2) "codehole.blog"
3) (integer) 3
这样生产者向这三个主题发布的消息,这个消费者都可以接收到。
> publish codehole.image https://www.google.com/dudo.png
(integer) 1
> publish codehole.text " 你好,欢迎加入码洞 "
(integer) 1
> publish codehole.blog '{"content": "hello, everyone", "title": "welcome"}'
(integer) 1
如果现在要增加一个主题codehole.group
,客户端必须也跟着增加一个订阅指令才可以收到新开主题的消息推送。
为了简化订阅的繁琐,redis 提供了模式订阅功能Pattern Subscribe
,这样就可以一次订阅多个主题,即使生产者新增加了同模式的主题,消费者也可以立即收到消息
> psubscribe codehole.* # 用模式匹配一次订阅多个主题,主题以 codehole. 字符开头的消息都可以收到
1) "psubscribe"
2) "codehole.*"
3) (integer) 1
前面的消费者消息输出时都是下面的这样一个字典形式
{'pattern': None, 'type': 'subscribe', 'channel': 'codehole', 'data': 1L}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'python comes'}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'java comes'}
{'pattern': None, 'type': 'message', 'channel': 'codehole', 'data': 'golang comes'}
那这几个字段是什么含义呢?
data 这个毫无疑问就是消息的内容,一个字符串。
channel 这个也很明显,它表示当前订阅的主题名称。
type 它表示消息的类型,如果是一个普通的消息,那么类型就是 message,如果是控制消息,比如订阅指令的反馈,它的类型就是 subscribe,如果是模式订阅的反馈,它的类型就是 psubscribe,还有取消订阅指令的反馈 unsubscribe 和 punsubscribe。
pattern 它表示当前消息是使用哪种模式订阅到的,如果是通过 subscribe 指令订阅的,那么这个字段就是空。
PubSub 的生产者传递过来一个消息,Redis 会直接找到相应的消费者传递过去。如果一个消费者都没有,那么消息直接丢弃。如果开始有三个消费者,一个消费者突然挂掉了,生产者会继续发送消息,另外两个消费者可以持续收到消息。但是挂掉的消费者重新连上的时候,这断连期间生产者发送的消息,对于这个消费者来说就是彻底丢失了。
如果 Redis 停机重启,PubSub 的消息是不会持久化的,毕竟 Redis 宕机就相当于一个消费者都没有,所有的消息直接被丢弃。
正是因为 PubSub 有这些缺点,它几乎找不到合适的应用场景。所以 Redis 的作者单独开启了一个项目 Disque 专门用来做多播消息队列。该项目目前没有成熟,一直长期处于 Beta 版本,但是相应的客户端 sdk 已经非常丰富了,就待 Redis 作者临门一脚发布一个 Release 版本。关于 Disque 的更多细节,本小册不会多做详细介绍,感兴趣的同学可以去阅读相关文档。
近期 Redis5.0 新增了 Stream 数据结构,这个功能给 Redis 带来了持久化消息队列,从此 PubSub 可以消失了,Disqueue 估计也永远发不出它的 Release 版本了。具体内容请读者阅读 Stream 章节内容.
很多企业都没有使用到 Redis 的集群,但是至少都做了主从。有了主从,当 master 挂掉的时候,运维让从库过来接管,服务就可以继续,否则 master 需要经过数据恢复和重启的过程,这就可能会拖很长的时间,影响线上业务的持续服务。
在了解 Redis 的主从复制之前,让我们先来理解一下现代分布式系统的理论基石——CAP 原理。
CAP 原理就好比分布式领域的牛顿定律,它是分布式存储的理论基石。自打 CAP 的论文发表之后,分布式存储中间件犹如雨后春笋般一个一个涌现出来。理解这个原理其实很简单,本节我们首先对这个原理进行一些简单的讲解。
分布式系统的节点往往都是分布在不同的机器上进行网络隔离开的,这意味着必然会有网络断开的风险,这个网络断开的场景的专业词汇叫着「网络分区」。
在网络分区发生时,两个分布式节点之间无法进行通信,我们对一个节点进行的修改操作将无法同步到另外一个节点,所以数据的「一致性」将无法满足,因为两个分布式节点的数据不再保持一致。除非我们牺牲「可用性」,也就是暂停分布式节点服务,在网络分区发生时,不再提供修改数据的功能,直到网络状况完全恢复正常再继续对外提供服务。
一句话概括 CAP 原理就是——网络分区发生时,一致性和可用性两难全。
Redis 的主从数据是异步同步的,所以分布式的 Redis 系统并不满足「一致性」要求。当客户端在 Redis 的主节点修改了数据后,立即返回,即使在主从网络断开的情况下,主节点依旧可以正常对外提供修改服务,所以 Redis 满足「可用性」。
Redis 保证「最终一致性」,从节点会努力追赶主节点,最终从节点的状态会和主节点的状态将保持一致。如果网络断开了,主从节点的数据将会出现大量不一致,一旦网络恢复,从节点会采用多种策略努力追赶上落后的数据,继续尽力保持和主节点一致。
Redis 同步支持主从同步和从从同步,从从同步功能是 Redis 后续版本增加的功能,为了减轻主库的同步负担。后面为了描述上的方便,统一理解为主从同步。
Redis 同步的是指令流,主节点会将那些对自己的状态产生修改性影响的指令记录在本地的内存 buffer 中,然后异步将 buffer 中的指令同步到从节点,从节点一边执行同步的指令流来达到和主节点一样的状态,一边向主节点反馈自己同步到哪里了 (偏移量)。
因为内存的 buffer 是有限的,所以 Redis 主库不能将所有的指令都记录在内存 buffer 中。Redis 的复制内存 buffer 是一个定长的环形数组,如果数组内容满了,就会从头开始覆盖前面的内容。
如果因为网络状况不好,从节点在短时间内无法和主节点进行同步,那么当网络状况恢复时,Redis 的主节点中那些没有同步的指令在 buffer 中有可能已经被后续的指令覆盖掉了,从节点将无法直接通过指令流来进行同步,这个时候就需要用到更加复杂的同步机制 —— 快照同步。
快照同步是一个非常耗费资源的操作,它首先需要在主库上进行一次 bgsave 将当前内存的数据全部快照到磁盘文件中,然后再将快照文件的内容全部传送到从节点。从节点将快照文件接受完毕后,立即执行一次全量加载,加载之前先要将当前内存的数据清空。加载完毕后通知主节点继续进行增量同步。
在整个快照同步进行的过程中,主节点的复制 buffer 还在不停的往前移动,如果快照同步的时间过长或者复制 buffer 太小,都会导致同步期间的增量指令在复制 buffer 中被覆盖,这样就会导致快照同步完成后无法进行增量复制,然后会再次发起快照同步,如此极有可能会陷入快照同步的死循环。所以务必配置一个合适的复制 buffer 大小参数,避免快照复制的死循环。
当从节点刚刚加入到集群时,它必须先要进行一次快照同步,同步完成后再继续进行增量同步。
主节点在进行快照同步时,会进行很重的文件 IO 操作,特别是对于非 SSD 磁盘存储时,快照会对系统的负载产生较大影响。特别是当系统正在进行 AOF 的 fsync 操作时如果发生快照,fsync 将会被推迟执行,这就会严重影响主节点的服务效率。
所以从 Redis 2.8.18 版开始支持无盘复制。所谓无盘复制是指主服务器直接通过套接字将快照内容发送到从节点,生成快照是一个遍历的过程,主节点会一边遍历内存,一边将序列化的内容发送到从节点,从节点还是跟之前一样,先将接收到的内容存储到磁盘文件中,再进行一次性加载。
Redis 的复制是异步进行的,wait 指令可以让异步复制变身同步复制,确保系统的强一致性 (不严格)。wait 指令是 Redis3.0 版本以后才出现的。
> set key value
OK
> wait 1 0
(integer) 1
wait 提供两个参数,第一个参数是从库的数量 N,第二个参数是时间 t,以毫秒为单位。它表示等待 wait 指令之前的所有写操作同步到 N 个从库 (也就是确保 N 个从库的同步没有滞后),最多等待时间 t。如果时间 t=0,表示无限等待直到 N 个从库同步完成达成一致。
假设此时出现了网络分区,wait 指令第二个参数时间 t=0,主从同步无法继续进行,wait 指令会永远阻塞,Redis 服务器将丧失可用性。
主从复制是 Redis 分布式的基础,Redis 的高可用离开了主从复制将无从进行。后面的章节我们会开始讲解 Redis 的集群模式,这几种集群模式都依赖于本节所讲的主从复制。
不过复制功能也不是必须的,如果你将 Redis 只用来做缓存,跟 memcache 一样来对待,也就无需要从库做备份,挂掉了重新启动一下就行。但是只要你使用了 Redis 的持久化功能,就必须认真对待主从复制,它是系统数据安全的基础保障。
目前我们讲的 Redis 还只是主从方案,最终一致性。读者们可思考过,如果主节点凌晨 3 点突发宕机怎么办?就坐等运维从床上爬起来,然后手工进行从主切换,再通知所有的程序把地址统统改一遍重新上线么?毫无疑问,这样的人工运维效率太低,事故发生时估计得至少 1 个小时才能缓过来。如果是一个大型公司,这样的事故足以上新闻了。
所以我们必须有一个高可用方案来抵抗节点故障,当故障发生时可以自动进行从主切换,程序可以不用重启,运维可以继续睡大觉,仿佛什么事也没发生一样。Redis 官方提供了这样一种方案 —— Redis Sentinel(哨兵)。
我们可以将 Redis Sentinel 集群看成是一个 ZooKeeper 集群,它是集群高可用的心脏,它一般是由 3~5 个节点组成,这样挂了个别节点集群还可以正常运转。
它负责持续监控主从节点的健康,当主节点挂掉时,自动选择一个最优的从节点切换为主节点。客户端来连接集群时,会首先连接 sentinel,通过 sentinel 来查询主节点的地址,然后再去连接主节点进行数据交互。当主节点发生故障时,客户端会重新向 sentinel 要地址,sentinel 会将最新的主节点地址告诉客户端。如此应用程序将无需重启即可自动完成节点切换。比如上图的主节点挂掉后,集群将可能自动调整为下图所示结构。
从这张图中我们能看到主节点挂掉了,原先的主从复制也断开了,客户端和损坏的主节点也断开了。从节点被提升为新的主节点,其它从节点开始和新的主节点建立复制关系。客户端通过新的主节点继续进行交互。Sentinel 会持续监控已经挂掉了主节点,待它恢复后,集群会调整为下面这张图。
此时原先挂掉的主节点现在变成了从节点,从新的主节点那里建立复制关系。
Redis 主从采用异步复制,意味着当主节点挂掉时,从节点可能没有收到全部的同步消息,这部分未同步的消息就丢失了。如果主从延迟特别大,那么丢失的数据就可能会特别多。Sentinel 无法保证消息完全不丢失,但是也尽可能保证消息少丢失。它有两个选项可以限制主从延迟过大。
min-slaves-to-write 1
min-slaves-max-lag 10
第一个参数表示主节点必须至少有一个从节点在进行正常复制,否则就停止对外写服务,丧失可用性。
何为正常复制,何为异常复制?这个就是由第二个参数控制的,它的单位是秒,表示如果 10s 没有收到从节点的反馈,就意味着从节点同步不正常,要么网络断开了,要么一直没有给反馈。
接下来我们看看客户端如何使用 sentinel,标准的流程应该是客户端可以通过 sentinel 发现主从节点的地址,然后在通过这些地址建立相应的连接来进行数据存取操作。我们来看看 Python 客户端是如何做的。
>>> from redis.sentinel import Sentinel
>>> sentinel = Sentinel([('localhost', 26379)], socket_timeout=0.1)
>>> sentinel.discover_master('mymaster')
('127.0.0.1', 6379)
>>> sentinel.discover_slaves('mymaster')
[('127.0.0.1', 6380)]
sentinel 的默认端口是 26379,不同于 Redis 的默认端口 6379,通过 sentinel 对象的 discover_xxx 方法可以发现主从地址,主地址只有一个,从地址可以有多个。
>>> master = sentinel.master_for('mymaster', socket_timeout=0.1)
>>> slave = sentinel.slave_for('mymaster', socket_timeout=0.1)
>>> master.set('foo', 'bar')
>>> slave.get('foo')
'bar'
通过 xxx_for 方法可以从连接池中拿出一个连接来使用,因为从地址有多个,redis 客户端对从地址采用轮询方案,也就是 RoundRobin 轮着来。
有个问题是,但 sentinel 进行主从切换时,客户端如何知道地址变更了 ? 通过分析源码,我发现 redis-py 在建立连接的时候进行了主库地址变更判断。
连接池建立新连接时,会去查询主库地址,然后跟内存中的主库地址进行比对,如果变更了,就断开所有连接,重新使用新地址建立新连接。如果是旧的主库挂掉了,那么所有正在使用的连接都会被关闭,然后在重连时就会用上新地址。
但是这样还不够,如果是 sentinel 主动进行主从切换,主库并没有挂掉,而之前的主库连接已经建立了在使用了,没有新连接需要建立,那这个连接是不是一致切换不了?
继续深入研究源码,我发现 redis-py 在另外一个点也做了控制。那就是在处理命令的时候捕获了一个特殊的异常ReadOnlyError
,在这个异常里将所有的旧连接全部关闭了,后续指令就会进行重连。
主从切换后,之前的主库被降级到从库,所有的修改性的指令都会抛出ReadonlyError
。如果没有修改性指令,虽然连接不会得到切换,但是数据不会被破坏,所以即使不切换也没关系。