变量来源于数学,是计算机语言中能储存计算结果或能表示值抽象概念。变量可以通过变量名访问。
Go 语言变量名由字母、数字、下划线组成,其中首个字符不能为数字。
声明变量的一般形式是使用 var 关键字:
var identifier type
变量声明
第一种,指定变量类型,如果没有初始化,则变量默认为零值。
var v_name v_type
v_name = value
零值就是变量没有做初始化时系统默认设置的值。
数值类型(包括complex64/128)为 0
布尔类型为 false
字符串为 “”(空字符串)
以下几种类型为 nil:
var a *int
var a []int
var a map[string] int
var a chan int
var a func(string) int
var a error // error 是接口
实例
package main
import "fmt"
func main() {
var i int
var f float64
var b bool
var s string
fmt.Printf("%v %v %v %q\n", i, f, b, s)
}
输出结果是:
0 0 false ""
第二种,根据值自行判定变量类型。
var v_name = value
第三种,省略 var, 注意 := 左侧如果没有声明新的变量,就产生编译错误,格式:
v_name := value
例如:
var intVal int
intVal :=1 // 这时候会产生编译错误
intVal,intVal1 := 1,2 // 此时不会产生编译错误,因为有声明新的变量,因为 := 是一个声明语句
实例
package main
import "fmt"
func main() {
// 声明一个变量并初始化
var a = "RUNOOB"
fmt.Println(a)
// 没有初始化就为零值
var b int
fmt.Println(b)
// bool 零值为 false
var c bool
fmt.Println(c)
}
以上实例执行结果为:
RUNOOB
0
false
多变量声明
//类型相同多个变量, 非全局变量
var vname1, vname2, vname3 type
vname1, vname2, vname3 = v1, v2, v3
var vname1, vname2, vname3 = v1, v2, v3 // 和 python 很像,不需要显示声明类型,自动推断
vname1, vname2, vname3 := v1, v2, v3 // 出现在 := 左侧的变量不应该是已经被声明过的,否则会导致编译错误
// 这种因式分解关键字的写法一般用于声明全局变量
var (
vname1 v_type1
vname2 v_type2
)
实例
package main
var x, y int
var ( // 这种因式分解关键字的写法一般用于声明全局变量
a int
b bool
)
var c, d int = 1, 2
var e, f = 123, "hello"
//这种不带声明格式的只能在函数体中出现
//g, h := 123, "hello"
func main(){
g, h := 123, "hello"
println(x, y, a, b, c, d, e, f, g, h)
}
以上实例执行结果为:
0 0 0 false 1 2 123 hello 123 hello
所有像 int、float、bool 和 string 这些基本类型都属于值类型,使用这些类型的变量直接指向存在内存中的值:
当使用等号 = 将一个变量的值赋值给另一个变量时,如:j = i,实际上是在内存中将 i 的值进行了拷贝:
你可以通过 &i 来获取变量 i 的内存地址,例如:0xf840000040(每次的地址都可能不一样)。值类型的变量的值存储在栈中。
内存地址会根据机器的不同而有所不同,甚至相同的程序在不同的机器上执行后也会有不同的内存地址。因为每台机器可能有不同的存储器布局,并且位置分配也可能不同。
更复杂的数据通常会需要使用多个字,这些数据一般使用引用类型保存。
一个引用类型的变量 r1 存储的是 r1 的值所在的内存地址(数字),或内存地址中第一个字所在的位置。
这个内存地址为称之为指针,这个指针实际上也被存在另外的某一个字中。
同一个引用类型的指针指向的多个字可以是在连续的内存地址中(内存布局是连续的),这也是计算效率最高的一种存储形式;也可以将这些字分散存放在内存中,每个字都指示了下一个字所在的内存地址。
当使用赋值语句 r2 = r1 时,只有引用(地址)被复制。
如果 r1 的值被改变了,那么这个值的所有引用都会指向被修改后的内容,在这个例子中,r2 也会受到影响。
我们知道可以在变量的初始化时省略变量的类型而由系统自动推断,声明语句写上 var 关键字其实是显得有些多余了,因此我们可以将它们简写为 a := 50 或 b := false。
a 和 b 的类型(int 和 bool)将由编译器自动推断。
这是使用变量的首选形式,但是它只能被用在函数体内,而不可以用于全局变量的声明与赋值。使用操作符 := 可以高效地创建一个新的变量,称之为初始化声明。
如果在相同的代码块中,我们不可以再次对于相同名称的变量使用初始化声明,例如:a := 20 就是不被允许的,编译器会提示错误 no new variables on left side of :=,但是 a = 20 是可以的,因为这是给相同的变量赋予一个新的值。
如果你在定义变量 a 之前使用它,则会得到编译错误 undefined: a。
如果你声明了一个局部变量却没有在相同的代码块中使用它,同样会得到编译错误,例如下面这个例子当中的变量 a:
实例:
package main
import "fmt"
func main() {
var a string = "abc"
fmt.Println("hello, world")
}
尝试编译这段代码将得到错误 a declared and not used。
此外,单纯地给 a 赋值也是不够的,这个值必须被使用,所以使用
fmt.Println("hello, world", a)
会移除错误。
但是全局变量是允许声明但不使用。 同一类型的多个变量可以声明在同一行。
多变量可以在同一行进行赋值,如
var a, b int
var c string
a, b, c = 5, 7, "abc"
上面这行假设了变量 a,b 和 c 都已经被声明,否则的话应该这样使用:
a, b, c := 5, 7, "abc"
右边的这些值以相同的顺序赋值给左边的变量,所以 a 的值是 5, b 的值是 7,c 的值是 “abc”。
这被称为 并行 或 同时 赋值。
如果你想要交换两个变量的值,则可以简单地使用 a, b = b, a,两个变量的类型必须是相同。
空白标识符 _ 也被用于抛弃值,如值 5 在:_, b = 5, 7 中被抛弃。
_ 实际上是一个只写变量,你不能得到它的值。这样做是因为 Go 语言中你必须使用所有被声明的变量,但有时你并不需要使用从一个函数得到的所有返回值。
并行赋值也被用于当一个函数返回多个返回值时,比如这里的 val 和错误 err 是通过调用 Func1 函数同时得到:val, err = Func1(var1)。
常量是一个简单值的标识符,在程序运行时,不会被修改的量。
常量中的数据类型只可以是布尔型、数字型(整数型、浮点型和复数)和字符串型。
常量的定义格式:
const identifier [type] = value
你可以省略类型说明符 [type],因为编译器可以根据变量的值来推断其类型。
多个相同类型的声明可以简写为:
const c_name1, c_name2 = value1, value2
以下实例演示了常量的应用:
package main
import "fmt"
func main() {
const LENGTH int = 10
const WIDTH int = 5
var area int
const a, b, c = 1, false, "str" //多重赋值
area = LENGTH * WIDTH
fmt.Printf("面积为 : %d", area)
println()
println(a, b, c)
}
以上实例运行结果为:
面积为 : 50
1 false str
常量还可以用作枚举:
const (
Unknown = 0
Female = 1
Male = 2
)
数字 0、1 和 2 分别代表未知性别、女性和男性。
常量可以用len(), cap(), unsafe.Sizeof()函数计算表达式的值。常量表达式中,函数必须是内置函数,否则编译不过:
package main
import "unsafe"
const (
a = "abc"
b = len(a)
c = unsafe.Sizeof(a)
)
func main(){
println(a, b, c)
}
以上实例运行结果为:
abc 3 16
iota
iota,特殊常量,可以认为是一个可以被编译器修改的常量。
iota 在 const关键字出现时将被重置为 0(const 内部的第一行之前),const 中每新增一行常量声明将使 iota 计数一次(iota 可理解为 const 语句块中的行索引)。
iota 可以被用作枚举值:
const (
a = iota
b = iota
c = iota
)
第一个 iota 等于 0,每当 iota 在新的一行被使用时,它的值都会自动加 1;所以 a=0, b=1, c=2 可以简写为如下形式:
const (
a = iota
b
c
)
iota 用法
package main
import "fmt"
func main() {
const (
a = iota //0
b //1
c //2
d = "ha" //独立值,iota += 1
e //"ha" iota += 1
f = 100 //iota +=1
g //100 iota +=1
h = iota //7,恢复计数
i //8
)
fmt.Println(a,b,c,d,e,f,g,h,i)
}
以上实例运行结果为:
0 1 2 ha ha 100 100 7 8
再看个有趣的的 iota 实例:
package main
import "fmt"
const (
i=1<
以上实例运行结果为:
i= 1
j= 6
k= 12
l= 24
iota 表示从 0 开始自动加 1,所以 i=1<<0, j=3<<1(<< 表示左移的意思),即:i=1, j=6,这没问题,关键在 k 和 l,从输出结果看 k=3<<2,l=3<<3。
简单表述:
i=1:左移 0 位,不变仍为 1;
j=3:左移 1 位,变为二进制 110, 即 6;
k=3:左移 2 位,变为二进制 1100, 即 12;
l=3:左移 3 位,变为二进制 11000,即 24。
运算符用于在程序运行时执行数学或逻辑运算。
Go 语言内置的运算符有:
下表列出了所有Go语言的算术运算符。假定 A 值为 10,B 值为 20。
以下实例演示了各个算术运算符的用法:
package main
import "fmt"
func main() {
var a int = 21
var b int = 10
var c int
c = a + b
fmt.Printf("第一行 - c 的值为 %d\n", c )
c = a - b
fmt.Printf("第二行 - c 的值为 %d\n", c )
c = a * b
fmt.Printf("第三行 - c 的值为 %d\n", c )
c = a / b
fmt.Printf("第四行 - c 的值为 %d\n", c )
c = a % b
fmt.Printf("第五行 - c 的值为 %d\n", c )
a++
fmt.Printf("第六行 - a 的值为 %d\n", a )
a=21 // 为了方便测试,a 这里重新赋值为 21
a--
fmt.Printf("第七行 - a 的值为 %d\n", a )
}
以上实例运行结果:
第一行 - c 的值为 31
第二行 - c 的值为 11
第三行 - c 的值为 210
第四行 - c 的值为 2
第五行 - c 的值为 1
第六行 - a 的值为 22
第七行 - a 的值为 20
下表列出了所有Go语言的关系运算符。假定 A 值为 10,B 值为 20。
以下实例演示了关系运算符的用法:
package main
import "fmt"
func main() {
var a int = 21
var b int = 10
if( a == b ) {
fmt.Printf("第一行 - a 等于 b\n" )
} else {
fmt.Printf("第一行 - a 不等于 b\n" )
}
if ( a < b ) {
fmt.Printf("第二行 - a 小于 b\n" )
} else {
fmt.Printf("第二行 - a 不小于 b\n" )
}
if ( a > b ) {
fmt.Printf("第三行 - a 大于 b\n" )
} else {
fmt.Printf("第三行 - a 不大于 b\n" )
}
/* Lets change value of a and b */
a = 5
b = 20
if ( a <= b ) {
fmt.Printf("第四行 - a 小于等于 b\n" )
}
if ( b >= a ) {
fmt.Printf("第五行 - b 大于等于 a\n" )
}
}
以上实例运行结果:
第一行 - a 不等于 b
第二行 - a 不小于 b
第三行 - a 大于 b
第四行 - a 小于等于 b
第五行 - b 大于等于 a
下表列出了所有Go语言的逻辑运算符。假定 A 值为 True,B 值为 False。
以下实例演示了逻辑运算符的用法:
package main
import "fmt"
func main() {
var a bool = true
var b bool = false
if ( a && b ) {
fmt.Printf("第一行 - 条件为 true\n" )
}
if ( a || b ) {
fmt.Printf("第二行 - 条件为 true\n" )
}
/* 修改 a 和 b 的值 */
a = false
b = true
if ( a && b ) {
fmt.Printf("第三行 - 条件为 true\n" )
} else {
fmt.Printf("第三行 - 条件为 false\n" )
}
if ( !(a && b) ) {
fmt.Printf("第四行 - 条件为 true\n" )
}
}
以上实例运行结果:
第二行 - 条件为 true
第三行 - 条件为 false
第四行 - 条件为 true
位运算符对整数在内存中的二进制位进行操作。
下表列出了位运算符 &, |, 和 ^ 的计算:
假定 A = 60; B = 13; 其二进制数转换为:
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
Go 语言支持的位运算符如下表所示。假定 A 为60,B 为13:
以下实例演示了位运算符的用法:
package main
import "fmt"
func main() {
var a uint = 60 /* 60 = 0011 1100 */
var b uint = 13 /* 13 = 0000 1101 */
var c uint = 0
c = a & b /* 12 = 0000 1100 */
fmt.Printf("第一行 - c 的值为 %d\n", c )
c = a | b /* 61 = 0011 1101 */
fmt.Printf("第二行 - c 的值为 %d\n", c )
c = a ^ b /* 49 = 0011 0001 */
fmt.Printf("第三行 - c 的值为 %d\n", c )
c = a << 2 /* 240 = 1111 0000 */
fmt.Printf("第四行 - c 的值为 %d\n", c )
c = a >> 2 /* 15 = 0000 1111 */
fmt.Printf("第五行 - c 的值为 %d\n", c )
}
以上实例运行结果:
第一行 - c 的值为 12
第二行 - c 的值为 61
第三行 - c 的值为 49
第四行 - c 的值为 240
第五行 - c 的值为 15
下表列出了所有Go语言的赋值运算符。
以下实例演示了赋值运算符的用法:
package main
import "fmt"
func main() {
var a int = 21
var c int
c = a
fmt.Printf("第 1 行 - = 运算符实例,c 值为 = %d\n", c )
c += a
fmt.Printf("第 2 行 - += 运算符实例,c 值为 = %d\n", c )
c -= a
fmt.Printf("第 3 行 - -= 运算符实例,c 值为 = %d\n", c )
c *= a
fmt.Printf("第 4 行 - *= 运算符实例,c 值为 = %d\n", c )
c /= a
fmt.Printf("第 5 行 - /= 运算符实例,c 值为 = %d\n", c )
c = 200;
c <<= 2
fmt.Printf("第 6行 - <<= 运算符实例,c 值为 = %d\n", c )
c >>= 2
fmt.Printf("第 7 行 - >>= 运算符实例,c 值为 = %d\n", c )
c &= 2
fmt.Printf("第 8 行 - &= 运算符实例,c 值为 = %d\n", c )
c ^= 2
fmt.Printf("第 9 行 - ^= 运算符实例,c 值为 = %d\n", c )
c |= 2
fmt.Printf("第 10 行 - |= 运算符实例,c 值为 = %d\n", c )
}
以上实例运行结果:
第 1 行 - = 运算符实例,c 值为 = 21
第 2 行 - += 运算符实例,c 值为 = 42
第 3 行 - -= 运算符实例,c 值为 = 21
第 4 行 - *= 运算符实例,c 值为 = 441
第 5 行 - /= 运算符实例,c 值为 = 21
第 6行 - <<= 运算符实例,c 值为 = 800
第 7 行 - >>= 运算符实例,c 值为 = 200
第 8 行 - &= 运算符实例,c 值为 = 0
第 9 行 - ^= 运算符实例,c 值为 = 2
第 10 行 - |= 运算符实例,c 值为 = 2
下表列出了Go语言的其他运算符。
以下实例演示了其他运算符的用法:
package main
import "fmt"
func main() {
var a int = 4
var b int32
var c float32
var ptr *int
/* 运算符实例 */
fmt.Printf("第 1 行 - a 变量类型为 = %T\n", a );
fmt.Printf("第 2 行 - b 变量类型为 = %T\n", b );
fmt.Printf("第 3 行 - c 变量类型为 = %T\n", c );
/* & 和 * 运算符实例 */
ptr = &a /* 'ptr' 包含了 'a' 变量的地址 */
fmt.Printf("a 的值为 %d\n", a);
fmt.Printf("*ptr 为 %d\n", *ptr);
}
以上实例运行结果:
第 1 行 - a 变量类型为 = int
第 2 行 - b 变量类型为 = int32
第 3 行 - c 变量类型为 = float32
a 的值为 4
*ptr 为 4
有些运算符拥有较高的优先级,二元运算符的运算方向均是从左至右。下表列出了所有运算符以及它们的优先级,由上至下代表优先级由高到低:
当然,你可以通过使用括号来临时提升某个表达式的整体运算优先级。
以上实例运行结果:
package main
import "fmt"
func main() {
var a int = 20
var b int = 10
var c int = 15
var d int = 5
var e int;
e = (a + b) * c / d; // ( 30 * 15 ) / 5
fmt.Printf("(a + b) * c / d 的值为 : %d\n", e );
e = ((a + b) * c) / d; // (30 * 15 ) / 5
fmt.Printf("((a + b) * c) / d 的值为 : %d\n" , e );
e = (a + b) * (c / d); // (30) * (15/5)
fmt.Printf("(a + b) * (c / d) 的值为 : %d\n", e );
e = a + (b * c) / d; // 20 + (150/5)
fmt.Printf("a + (b * c) / d 的值为 : %d\n" , e );
}
以上实例运行结果:
(a + b) * c / d 的值为 : 90
((a + b) * c) / d 的值为 : 90
(a + b) * (c / d) 的值为 : 90
a + (b * c) / d 的值为 : 50
指针变量* 和地址值&的区别:
指针变量保存的是一个地址值,会分配独立的内存来存储一个整型数字。
当变量前面有 * 标识时,才等同于&的用法,否则会直接输出一个整型数字。
func main() {
var a int = 4
var ptr *int
ptr = &a
println("a的值为", a); // 4
println("*ptr为", *ptr); // 4
println("ptr为", ptr); // 824633794744
}