Matlab 之灰色预测模型GM(1,1)和GM(1,n)

1.灰色系统的定义:
灰色系统指既含有已知信息又含有未知信息的系统。
2.灰色预测模型的定义:
对灰色系统进行预测的模型。
灰色模型(Grey Model,简称GM模型)一般表达方式为GM(n,x)模型,其含义是:用n阶微分方程对x个变量建立模型。
3.灰色预测模型的目的:
通过把分散在时间轴上的离散数据看成一组连续变化的序列,采用累加和累减的方式,将灰色系统中的未知因素弱化,强化已知因素的影响程度,最后构建一个以时间为变量的连续微分方程,通过数学方法确定方程中的参数,从而实现预测目的。
4.灰色系统预测模型的特点:
无需大量数据样本,短期预测效果好,运算过程简单。
5.灰色系统预测模型的不足:
对非线性数据样本预测效果差。

常用的灰色系统预测模型主要有GM(1,1)和GM(1,n),以下分别对这两种模型展开。
【1】.GM(1,1)模型及其matlab实现
1. GM(1,1)模型的预测原理是:对某一数据序列用累加的方式生成一组趋势明显的新数据序列,按照新的数据序列的增长趋势建立模型进行预测,然后再用累减的方法进行逆向计算,恢复原始数据序列,进而得到预测结果。
2. GM(1,1)建模过程:
(1) 设一组原始数据为这里写图片描述,n为数据个数。对这里写图片描述累加以便弱化随机序列的波动性和随机性,得到新的数列为:这里写图片描述其中,这里写图片描述
(2) 生成这里写图片描述的邻均值等权数列这里写图片描述 其中,这里写图片描述
(3) 根据灰色理论对这里写图片描述 建立关于t的白化形式的一阶一元微分方程GM(1,1):
这里写图片描述
其中,a,u为待解系数,分别称为发展系数和灰色作用量,a的有效区间是(-2,2),并记a,u构成的矩阵为灰参数这里写图片描述 ,只要求出参数a,u,就能求出这里写图片描述,进而求出这里写图片描述的预测值。
(4) 对累加生成数据做均值生成B与常数项向量这里写图片描述 :
Matlab 之灰色预测模型GM(1,1)和GM(1,n)_第1张图片
(5) 用最小二乘法求解灰参数这里写图片描述,则 这里写图片描述
(6) 将灰参数这里写图片描述代入这里写图片描述,并对这里写图片描述 进行求解,得
这里写图片描述
(7) 将上述结果累减还原,即可得到预测值这里写图片描述
(8) 利用模型进行预测: 这里写图片描述
(9) 对建立的灰色模型进行精度检验,
(9.1)残差检验:
残差:这里写图片描述
相对误差:这里写图片描述
(9.2)后验差检验:
均值:这里写图片描述
方差:这里写图片描述
残差的均值:这里写图片描述
残差的方差:这里写图片描述
后验差比值:这里写图片描述
小误差概率:小误差概率:
(9.3) 预测精度等级对照如下:
预测精度等级
好 P>0.95 C<0.35
合格 P>0.80 C<0.45
勉强合格 P>0.70 C<0.50
不合格 P<=0.70 C>=0.65

基于Matlab实现GM(1,1)模型程序:

clear
syms a u;
c=[a,u]';%构成矩阵
A=[15 16.1 17.3 18.4 18.7 19.6 19.9 21.3 22.5];%输入数据,可以修改
Ago=cumsum(A);%原始数据一次累加,得到1-AGO序列xi(1)。
n=length(A);%原始数据个数
for k=1:(n-1)
    Z(k)=(Ago(k)+Ago(k+1))/2; %Z(i)为xi(1)的紧邻均值生成序列
end
Yn =A;%Yn为常数项向量
Yn(1)=[]; %从第二个数开始,即x(2),x(3)...
Yn=Yn';
E=[-Z;ones(1,n-1)]';%累加生成数据做均值
c=(E'*E)\(E'*Yn);%利用公式求出a,u
c= c';
a=c(1);%得到a的值
u=c(2);%得到u的值
F=[];
F(1)=A(1);
for k=2:(n)
    F(k)=(A(1)-u/a)/exp(a*(k-1))+u/a;%求出GM(1,1)模型公式
end
G=[];
G(1)=A(1);
for k=2:(n)
    G(k)=F(k)-F(k-1);%两者做差还原原序列,得到预测数据
end
t1=1:n;
t2=1:n;
plot(t1,A,'bo--');
hold on;
plot(t2,G,'r*-'); 
title('预测结果');
legend('真实值','预测值');
%后验差检验
e=A-G;
q=e/A;%相对误差
s1=var(A);
s2=var(e);
c=s2/s1;%方差比
len=length(e);
p=0;  %小误差概率
for i=1:len
    if(abs(e(i))<0.6745*s1)
        p=p+1;
    end
end
p=p/len;

   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

运行结果如下:
Matlab 之灰色预测模型GM(1,1)和GM(1,n)_第2张图片


p=1;c=0.0148;预测等级为:好

从运行结果看,对于线性的数据使用GM(1,1)预测,其拟合效果还是不错。

【2】GM(1,n)模型及Matlab实现
1.GM(1,n)模型的预测原理:与GM(1,1)类似,不同在于输入数据变量是n个。
2. GM(1,n)模型的建模过程:
设系统有特征数据序列:这里写图片描述
相关因素序列:
这里写图片描述
(1) 令这里写图片描述的1-AGO序列为这里写图片描述,其中
这里写图片描述
(2) 生成这里写图片描述紧邻均值序列这里写图片描述,其中
这里写图片描述
这里写图片描述为GM(1,n)模型。
在GM(1,n)模型中,a被称为发展系数,称这里写图片描述为驱动系数,被称为驱动项。
这里写图片描述这里写图片描述
再令这里写图片描述,由最小二乘参数估计可得这里写图片描述,当这里写图片描述近似时间相应式为:这里写图片描述
累减还原式为这里写图片描述
差分模拟式为这里写图片描述

基于Matlab实现GM(1,n)预测模型的程序:

A=[560823,542386,604834,591248,583031,640636,575688,689637,570790,519574,614677];
x0=[104,101.8,105.8,111.5,115.97,120.03,113.3,116.4,105.1,83.4,73.3;
    135.6,140.2,140.1,146.9,144,143,133.3,135.7,125.8,98.5,99.8;
    131.6,135.5,142.6,143.2,142.2,138.4,138.4,135,122.5,87.2,96.5;
    54.2,54.9,54.8,56.3,54.5,54.6,54.9,54.8,49.3,41.5,48.9];
[n,m]=size(x0);
AGO=cumsum(A);
T=1;
x1=zeros(n,m+T);

for k=1:(m-1)
    Z(k)=(AGO(k)+AGO(k+1))/2; %Z(i)为xi(1)的紧邻均值生成序列
end
for i=1:n
    for j=1:m
        for k=1:j
            x1(i,j)=x1(i,j)+x0(i,k);%原始数据一次累加,得到xi(1)
        end
    end
end
x11=x1(:,1:m);
X=x1(:,2:m)';%截取矩阵
Yn =A;%Yn为常数项向量
Yn(1)=[]; %从第二个数开始,即x(2),x(3)...
Yn=Yn';
%Yn=A(:,2:m)';
B=[-Z',X];
C=((B'*B)\(B'*Yn))';%由公式建立GM(1,n)模型
a=C(1);
b=C(:,2:n+1);
F=[];
F(1)=A(1);
u=zeros(1,m);
for i=1:m
    for j=1:n
        u(i)=u(i)+(b(j)*x11(j,i));
    end
end
for k=2:m
    F(k)=(A(1)-u(k-1)/a)/exp(a*(k-1))+u(k-1)/a;
end
G=[];
G(1)=A(1);
for k=2:m
    G(k)=F(k)-F(k-1);%两者做差还原原序列,得到预测数据
end
t1=1:m;
t2=1:m;
plot(t1,A,'bo--');
hold on;
plot(t2,G,'r*-'); 
title('销售预测结果');
legend('真实值','预测值');
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

运行结果如下:
Matlab 之灰色预测模型GM(1,1)和GM(1,n)_第3张图片

GM(1,1)模型精度检验
Matlab 之灰色预测模型GM(1,1)和GM(1,n)_第4张图片

你可能感兴趣的:(matlab)