HashMap和TreeMap (转自:http://blog.csdn.net/forwayfarer/article/details/2922918)
1.AbstractMap抽象类和SortedMap接口
AbstractMap抽象类:覆盖了equals()和hashCode()方法以确保两个相等映射返回相同的哈希码。如果两个映射大小相等、包含同样的键且每个键在这两个映射中对应的值都相同,则这两个映射相等。映射的哈希码是映射元素哈希码的总和,其中每个元素是Map.Entry接口的一个实现。因此,不论映射内部顺序如何,两个相等映射会报告相同的哈希码。
SortedMap接口:它用来保持键的有序顺序。SortedMap接口为映像的视图(子集),包括两个端点提供了访问方法。除了排序是作用于映射的键以外,处理SortedMap和处理SortedSet一样。添加到SortedMap实现类的元素必须实现Comparable接口,否则您必须给它的构造函数提供一个Comparator接口的实现。TreeMap类是它的唯一一份实现。
2.两种常规Map实现(分别继承自AbstractMap和SortedMap)
HashMap:基于哈希表实现。使用HashMap要求添加的键类明确定义了hashCode()和equals()[可以重写hashCode()和equals()],为了优化HashMap空间的使用,您可以调优初始容量和负载因子。
(1)HashMap(): 构建一个空的哈希映像
(2)HashMap(Map m): 构建一个哈希映像,并且添加映像m的所有映射
(3)HashMap(int initialCapacity): 构建一个拥有特定容量的空的哈希映像
(4)HashMap(int initialCapacity, float loadFactor): 构建一个拥有特定容量和加载因子的空的哈希映像
TreeMap:基于红黑树实现。TreeMap没有调优选项,因为该树总处于平衡状态。
(1)TreeMap():构建一个空的映像树
(2)TreeMap(Map m): 构建一个映像树,并且添加映像m中所有元素
(3)TreeMap(Comparator c): 构建一个映像树,并且使用特定的比较器对关键字进行排序
(4)TreeMap(SortedMap s): 构建一个映像树,添加映像树s中所有映射,并且使用与有序映像s相同的比较器排序
3.两种常规Map性能
HashMap:适用于在Map中插入、删除和定位元素。
Treemap:适用于按自然顺序或自定义顺序遍历键(key)。
4.总结:HashMap通常比TreeMap快一点(树和哈希表的数据结构使然),建议多使用HashMap,在需要排序的Map时候才用TreeMap。Hashtable是线程安全的,它的方法是同步了的,可以直接用在多线程环境中,而HashMap则不是线程安全的。在多线程环境中,需要手动实现同步机制。
ConcurrentHashMap原理分析(转自:http://blog.csdn.net/liuzhengkang/article/details/2916620)
集合是编程中最常用的数据结构。而谈到并发,几乎总是离不开集合这类高级数据结构的支持。比如两个线程需要同时访问一个中间临界区(Queue),比如常会用缓存作为外部文件的副本(HashMap)。这篇文章主要分析jdk1.5的3种并发集合类型(concurrent,copyonright,queue)中的ConcurrentHashMap,让我们从原理上细致的了解它们,能够让我们在深度项目开发中获益非浅。
在tiger之前,我们使用得最多的数据结构之一就是HashMap和Hashtable。大家都知道,
HashMap中未进行同步考虑,而Hashtable则使用了synchronized,
带来的直接影响就是可选择,
我们可以在单线程时使用HashMap提高效率,而多线程时用Hashtable来保证安全
。
当我们享受着jdk带来的便利时同样承受它带来的不幸恶果。
通过分析Hashtable就知道,synchronized是针对整张Hash表的,即每次锁住整张表让线程独占,安全的背后是巨大的浪费,
慧眼独具的Doug Lee立马拿出了解决方案----ConcurrentHashMap。
ConcurrentHashMap和Hashtable主要区别就是围绕着锁的粒度以及如何锁
。如图
左边便是Hashtable的实现方式---锁整个hash表;而右边则是ConcurrentHashMap的实现方式---
锁桶(或段)
。ConcurrentHashMap将hash表分为16个桶(默认值),诸如get,put,remove等常用操作只锁当前需要用到的桶。试想,原来只能一个线程进入,现在却能同时16个写线程进入(
写线程才需要锁定,而读线程几乎不受限制
,之后会提到),并发性的提升是显而易见的。
更令人惊讶的是ConcurrentHashMap的读取并发,因为在读取的大多数时候都没有用到锁定,所以读取操作几乎是完全的并发操作,而写操作锁定的粒度又非常细,比起之前又更加快速(这一点在桶更多时表现得更明显些)。只有在求size等操作时才需要锁定整个表。
而在迭代时,ConcurrentHashMap使用了不同于传统集合的快速失败迭代器(见之前的文章《JAVA API备忘---集合》)的另一种迭代方式,我们称为弱一致迭代器。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationEx
ception,取而代之的是在改变时new新的数据从而不影响原有的数据,iterator完成后再将头指针替换为新的数据,这样iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变,更重要的,这保证了多个线程并发执行的连续性和扩展性,是性能提升的关键。
接下来,让我们看看ConcurrentHashMap中的几个重要方法,心里知道了实现机制后,使用起来就更加有底气。
ConcurrentHashMap中主要实体类就是三个:ConcurrentHashMap(整个Hash表),Segment(桶),HashEntry(节点),对应上面的图可以看出之间的关系。
get方法(请注意,这里分析的方法都是针对桶的,因为ConcurrentHashMap的最大改进就是将粒度细化到了桶上),首先判断了当前桶的数据个数是否为0,为0自然不可能get到什么,只有返回null,这样做避免了不必要的搜索,也用最小的代价避免出错。然后得到头节点(方法将在下面涉及)之后就是根据hash和key逐个判断是否是指定的值,如果是并且值非空就说明找到了,直接返回;程序非常简单,但有一个令人困惑的地方,这句return readValueUnderLock(e)到底是用来干什么的呢?研究它的代码,在锁定之后返回一个值。但这里已经有一句V v = e.value得到了节点的值,这句return readValueUnderLock(e)是否多此一举?事实上,这里完全是为了并发考虑的,这里当v为空时,可能是一个线程正在改变节点,而之前的get操作都未进行锁定,根据bernstein条件,读后写或写后读都会引起数据的不一致,所以这里要对这个e重新上锁再读一遍,以保证得到的是正确值,这里不得不佩服Doug Lee思维的严密性。整个get操作只有很少的情况会锁定,相对于之前的Hashtable,并发是不可避免的啊!
V get(Object key, int hash) { if (count != 0) { // read-volatile HashEntry e = getFirst(hash); while (e != null) { if (e.hash == hash && key.equals(e.key)) { V v = e.value; if (v != null) return v; return readValueUnderLock(e); // recheck } e = e.next; } } return null; } |
V readValueUnderLock(HashEntry e) { lock(); try { return e.value; } finally { unlock(); } } |
put操作一上来就锁定了整个segment,这当然是为了并发的安全,修改数据是不能并发进行的,必须得有个判断是否超限的语句以确保容量不足时能够rehash,而比较难懂的是这句int index = hash & (tab.length - 1),原来segment里面才是真正的hashtable,即每个segment是一个传统意义上的hashtable,如上图,从两者的结构就可以看出区别,这里就是找出需要的entry在table的哪一个位置,之后得到的entry就是这个链的第一个节点,如果e!=null,说明找到了,这是就要替换节点的值(onlyIfAbsent == false),否则,我们需要new一个entry,它的后继是first,而让tab[index]指向它,什么意思呢?实际上就是将这个新entry插入到链头,剩下的就非常容易理解了。
V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { int c = count; if (c++ > threshold) // ensure capacity rehash(); HashEntry[] tab = table; int index = hash & (tab.length - 1); HashEntry first = (HashEntry) tab[index]; HashEntry e = first; while (e != null && (e.hash != hash || !key.equals(e.key))) e = e.next; V oldValue; if (e != null) { oldValue = e.value; if (!onlyIfAbsent) e.value = value; } else { oldValue = null; ++modCount; tab[index] = new HashEntry(key, hash, first, value); count = c; // write-volatile } return oldValue; } finally { |