int clock_getres(clockid_t clk_id, struct timespec *res)
这个函数就是根据 clk_id 返回相应的 time:
CLOCK_REALTIME real_time clock 系统绝对时间
CLOCK_MONOTONIC 单调时间
关于这个函数更详细的介绍请参考 man 手册
首先假设在用户态
1
2
3
|
struct
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now)
|
走起:
首先要从初始化开始:
kernel/posix-timers.c
1
2
3
4
5
|
__initcall(init_posix_timers);
#define __initcall(fn) device_initcall(fn)
#define device_initcall(fn) __define_initcall("6",fn,6)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
static
__init
int
init_posix_timers(
void
)
{
struct
k_clock clock_realtime = {
.clock_getres = hrtimer_get_res,
};
struct
k_clock clock_monotonic = {
.clock_getres = hrtimer_get_res,
.clock_get = posix_ktime_get_ts,
.clock_set = do_posix_clock_nosettime,
};
struct
k_clock clock_monotonic_raw = {
.clock_getres = hrtimer_get_res,
.clock_get = posix_get_monotonic_raw,
.clock_set = do_posix_clock_nosettime,
.timer_create = no_timer_create,
.nsleep = no_nsleep,
};
struct
k_clock clock_realtime_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get = posix_get_realtime_coarse,
.clock_set = do_posix_clock_nosettime,
.timer_create = no_timer_create,
.nsleep = no_nsleep,
};
struct
k_clock clock_monotonic_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get = posix_get_monotonic_coarse,
.clock_set = do_posix_clock_nosettime,
.timer_create = no_timer_create,
.nsleep = no_nsleep,
};
register_posix_clock(CLOCK_REALTIME, &clock_realtime);
register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
// 注册
register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
posix_timers_cache = kmem_cache_create(
"posix_timers_cache"
,
sizeof
(
struct
k_itimer), 0, SLAB_PANIC,
NULL);
idr_init(&posix_timers_id);
return
0;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
void
register_posix_clock(
const
clockid_t clock_id,
struct
k_clock *new_clock)
{
if
((unsigned) clock_id >= MAX_CLOCKS) {
printk(
"POSIX clock register failed for clock_id %d\n"
,
clock_id);
return
;
}
posix_clocks[clock_id] = *new_clock;
}
// 这段代码真的很简单,不需要过多的解释
static
struct
k_clock posix_clocks[MAX_CLOCKS];
#define CLOCK_REALTIME 0
#define CLOCK_MONOTONIC 1
#define CLOCK_SGI_CYCLE 10
#define MAX_CLOCKS 16
#define CLOCKS_MASK (CLOCK_REALTIME | CLOCK_MONOTONIC)
#define CLOCKS_MONO CLOCK_MONOTONIC
|
来了
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
SYSCALL_DEFINE2(clock_gettime,
const
clockid_t, which_clock,
struct
timespec __user *,tp)
{
struct
timespec kernel_tp;
int
error;
if
(invalid_clockid(which_clock))
return
-EINVAL;
// 首先检查 clock_id 是否 valid,此时是 CLOCK_MONOTONIC
error = CLOCK_DISPATCH(which_clock, clock_get,
(which_clock, &kernel_tp));
// posix_ktime_get_ts(CLOCK_MONOTONIC, &kernel_tp);
if
(!error && copy_to_user(tp, &kernel_tp,
sizeof
(kernel_tp)))
error = -EFAULT;
return
error;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
|
static
inline
int
invalid_clockid(
const
clockid_t which_clock)
{
if
(which_clock < 0)
/* CPU clock, posix_cpu_* will check it */
return
0;
if
((unsigned) which_clock >= MAX_CLOCKS)
return
1;
if
(posix_clocks[which_clock].clock_getres != NULL)
return
0;
if
(posix_clocks[which_clock].res != 0)
return
0;
return
1;
}
|
1
2
3
4
5
6
7
8
9
10
|
#define CLOCK_DISPATCH(clock, call, arglist) \
((
clock
) < 0 ? posix_cpu_##call arglist : \
(posix_clocks[
clock
].call != NULL \
? (*posix_clocks[
clock
].call) arglist : common_##call arglist))
CLOCK_DISPATCH(CLOCK_MONOTONIC,clock_get,(CLOCK_MONOTONIC, &kernel_tp)) \
((
clock
) < 0 ? posix_cpu_##call arglist : (posix_clocks[
clock
].clock_get != NULL ? (*posix_clocks[
clock
].call) arglist : common_##call arglist))
// 其实最终就是这个样子
posix_ktime_get_ts(CLOCK_MONOTONIC, &kernel_tp);
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
static
int
posix_ktime_get_ts(clockid_t which_clock,
struct
timespec *tp)
{
ktime_get_ts(tp);
return
0;
}
void
ktime_get_ts(
struct
timespec *ts)
{
struct
timespec tomono; unsigned
int
seq; s64 nsecs;
WARN_ON(timekeeping_suspended);
do
{
seq = read_seqbegin(&xtime_lock);
// 加读锁
*ts = xtime;
// 当前时间,内核时间(UTC 时间)
tomono = wall_to_monotonic;
nsecs = timekeeping_get_ns();
// 得到距离上一次得到时间中间走过的时间(纳秒)
}
while
(read_seqretry(&xtime_lock, seq));
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
ts->tv_nsee + tomono.tv_nsec + nsecs);
}
|
这个函数和 getnstimeofday 很像,细节可以参考 gettimeofday
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
void
set_normalized_timespec(
struct
timespec *ts,
time_t
sec, s64 nsec)
{
while
(nsec >= NSEC_PER_SEC) {
/*
* The following asm() prevents the compiler from
* optimising this loop into a modulo operation. See
* also __iter_div_u64_rem() in include/linux/time.h
*/
asm(
""
:
"+rm"
(nsec));
nsec -= NSEC_PER_SEC;
++sec;
}
while
(nsec < 0) {
asm(
""
:
"+rm"
(nsec));
nsec += NSEC_PER_SEC;
--sec;
}
ts->tv_sec = sec;
ts->tv_nsec = nsec;
}
|
其实原理就是记录一下开始的时间在 timekeeping_init() 中,然后用当前时间减去开始的时间就是经过的时间也就是单调时间~
但是 wall_to_monotonic 这个东东就不得不说一下了,他到底是神马玩意儿呢? 关于它还得追溯到 timekeeping_init() 中
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
struct
timespec wall_to_monotonic __attribute__ ((aligned (16)));
void
__init timekeeping_init(
void
)
{
struct
clocksource *
clock
;
unsigned
long
flags;
struct
timespec now, boot;
read_persistent_clock(&now);
// 读取 RTC chip,get the UTC time
read_boot_clock(&boot);
......
xtime.tv_sec = now.tv_sec;
xtime.tv_nsec = now.tv_nsec;
raw_time.tv_sec = 0;
raw_time.tv_nsec = 0;
if
(boot.tv_sec == 0 && boot.tv_nsec == 0) {
boot.tv_sec = xtime.tv_sec;
boot.tv_nsec = xtime.tv_nsec;
}
set_normalized_timespec(&wall_to_monotonic,
-boot.tv_sec, -boot.tv_nsec);
......
}
|
首先读取 RTC 获得 UTC 时间,保存到 xtime 中,最后记录到 wall_to_monotonic,只不过是个负值。其实就是记录一下系统启动时候的 real time.
clock_gettime() 函数 基本上也就说完了,这个函数的实现比较简单,但是仍然有几点需要说明:
1. 它和 gettimeofday() 的区别是什么 ?
当 clock_gettime() clock_id 指定为 CLOCK_REALTIME 时,它与 gettimeofday 完全一样,只不过它返回的是纳秒,而 gettimeofday 返回的是微秒。
struct timespec ts;
struct timeval tv;clock_gettime(CLOCK_REALTIME,&ts);
gettimeofday(&tv,NULL);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
SYSCALL_DEFINE2(clock_gettime,
const
clockid_t, which_clock,
struct
timespec __user *,tp)
{
......
error = CLOCK_DISPATCH(which_clock, clock_get,
(which_clock, &kernel_tp));
// 其实就是调用 common_clock_get(CLOCK_REALTIME, &kernel_tp);
......
}
static
int
common_clock_get(clockid_t which_clock,
struct
timespec *tp)
{
ktime_get_real_ts(tp);
return
0;
}
#define ktime_get_real_ts(ts) getnstimeofday(ts)
// 就是调用 getnstimeofday(),同理再 gettimeofday() 中也是调用 getnstimeofday() ,关于这个函数细节参考下:gettimeofday
|
2.CLOCK_MONOTONIC 单调时间,那究竟什么是单调时间呢?
CLOCK_MONOTONIC 表示单调时间,此时间会一直增加,不会受系统时间改变的影响。其实就是表示系统启动了多长时间,可通过 uptime 查看.
比如我们用 settimeofday 往回设置时间,假设 current 20:00:00 往回设置 10 s,这样当用 gettimeofday 获得当前时间时是获得的绝对的时间,为 19:50:00,也就是说 gettimeofday 获得的”值”会比没设置前小。但是当用 clock_getime 并指定 clock_id 为 CLOCK_MONOTONIC 时,在时间设置前后其“值”都是递增的。因为在 do_settimeofday 中 wall_to_monotonic 也会被设置,会被往回设置 10 s.
举个例子:
比如系统启动时的 UTC 时间是 20:00:00 ,此时 wall_to_monotonic 记录着这个时间,假设当前时间为 21:00:00,那么系统启动了 1h,通过 clock_gettime(CLOCK_MONOTONIC, …. ) 即可得到这个 1h.好现在往回设置时间,设置到 20:30:00,那么 相应 wall_to_monotonic 的值也会往回设置,为 19:30:00,xtime 回在这个基础上增加,这就是为什么当我们用 clock_gettime 获得单调时间时它的值一直增加了:
下面的代码说明了这一点:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
int
do_settimeofday(
struct
timespec *tv)
{
......
// tv 是要设置的时间
ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
......
}
static
inline
struct
timespec timespec_sub(
struct
timespec lhs,
struct
timespec rhs)
{
struct
timespec ts_delta;
set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
lhs.tv_nsec - rhs.tv_nsec);
return
ts_delta;
}
|
写个测试程序来验证这一点:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
#include
#include
#include
int
main(
int
argc,
const
char
*argv[])
{
struct
timeval tv1,tv2;
struct
timespec ts1,ts2;
struct
timeval temp;
gettimeofday(&tv1,NULL);
clock_gettime(CLOCK_MONOTONIC,&ts1);
temp = tv1;
temp.tv_sec -= 10;
settimeofday(&temp,NULL);
gettimeofday(&tv2,NULL);
clock_gettime(CLOCK_MONOTONIC,&ts2);
printf
(
"gettimeofday start = %ld.%6ld,end = %ld.%6ld, \n\t => diff = %f \n"
,tv1.tv_sec, tv1.tv_usec, tv2.tv_sec, tv2.tv_usec, ((tv2.tv_sec * 1000000 + tv2.tv_usec) - (tv1.tv_sec * 1000000 + tv1.tv_usec))/1000000.0);
printf
(
"clock_gettime start = %ld.%9ld,end = %ld.%9ld, \n\t => diff = %f \n"
,ts1.tv_sec, ts1.tv_nsec, ts2.tv_sec, ts2.tv_nsec, ((ts2.tv_sec * 1000000000 + ts2.tv_nsec) - (ts1.tv_sec * 1000000000 + ts1.tv_nsec))/1000000000.0);
return
0;
}
|
# ./clock_gettime_gettimeofday
gettimeofday start = 1345788337.265370,end = 1345788327.265383, << end 值明显变小
=> diff = -9.999987
clock_gettime start = 2595.332710380,end = 2595.332726631, << end 值增大
=> diff = 0.000016
最后 clock_gettime 就大致 BB 完了,还有几个与时间有关的 posix 函数(clock_getres,clock_settime),这几个函数的实现与 clock_gettime 大致相同