Python-OpenCV 处理图像(六):对象识别

0x00. 特征识别

这里主要用到两个函数:

GoodFeaturesToTrack 和 extractSURF

  • GoodFeaturesToTrack: 在图像中寻找具有大特征值的角点。
  • SURF算法: 是一个稳健的图像识别和描述算法。

总之这俩个我目前也不清楚能用来干嘛,以后用到了在更新吧。

import cv2.cv as cv
import math
 
im = cv.LoadImage("img/church.png", cv.CV_LOAD_IMAGE_GRAYSCALE)
im2 = cv.CloneImage(im)
 
# Goodfeatureto track algorithm
eigImage = cv.CreateMat(im.height, im.width, cv.IPL_DEPTH_32F)
tempImage = cv.CloneMat(eigImage)
cornerCount = 500
quality = 0.01
minDistance = 10
 
corners = cv.GoodFeaturesToTrack(im, eigImage, tempImage, cornerCount, quality, minDistance)
 
radius = 3
thickness = 2
 
for (x,y) in corners:
    cv.Circle(im, (int(x),int(y)), radius, (255,255,255), thickness)
 
cv.ShowImage("GoodfeaturesToTrack", im)
 
#SURF algorithm
hessthresh = 1500 # 400 500
dsize = 0 # 1
layers = 1 # 3 10
 
keypoints, descriptors = cv.ExtractSURF(im2, None, cv.CreateMemStorage(), (dsize, hessthresh, 3, layers))
for ((x, y), laplacian, size, dir, hessian) in keypoints:
    cv.Circle(im2, (int(x),int(y)), cv.Round(size/2), (255,255,255), 1)
    x2 = x+((size/2)*math.cos(dir))
    y2 = y+((size/2)*math.sin(dir))
    cv.Line(im2, (int(x),int(y)), (int(x2),int(y2)), (255,255,255), 1)
 
cv.ShowImage("SURF ", im2)
 
cv.WaitKey(0)

0x01. 人脸识别

可以使用 OpenCV 训练好的级联分类器来识别图像中的人脸,当然还有很多其他的分类器:例如表情识别,鼻子等,具体可在这里下载:

OpenCV分类器

具体使用代码:

#import library - MUST use cv2 if using opencv_traincascade
import cv2
 
# rectangle color and stroke
color = (0,0,255)       # reverse of RGB (B,G,R) - weird
strokeWeight = 1        # thickness of outline
 
# set window name
windowName = "Object Detection"
 
# load an image to search for faces
img = cv2.imread("mao.jpg")
 
# load detection file (various files for different views and uses)
cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
 
# preprocessing, as suggested by: http://www.bytefish.de/wiki/opencv/object_detection
# img_copy = cv2.resize(img, (img.shape[1]/2, img.shape[0]/2))
# gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
# gray = cv2.equalizeHist(gray)
 
# detect objects, return as list
rects = cascade.detectMultiScale(img)
 
# display until escape key is hit
while True:
 
    # get a list of rectangles
    for x,y, width,height in rects:
        cv2.rectangle(img, (x,y), (x+width, y+height), color, strokeWeight)
 
    # display!
    cv2.imshow(windowName, img)
 
    # escape key (ASCII 27) closes window
    if cv2.waitKey(20) == 27:
        break
 
# if esc key is hit, quit!
exit()

效果:

Python-OpenCV 处理图像(六):对象识别_第1张图片

转载自:http://python.jobbole.com/85223/


你可能感兴趣的:(AI)