周期问题

1 什么是周期问题?

生活中,我们经常会遇到诸如每星期7天,每隔7天就要循环一次,一年12个月,每隔12个月就要循环一次,被3整除的自然数,每3个循环一次等,像这种有规律性的每隔固定期限就要周而复始循环出现的问题,统称周期问题。

2 例子

除了上面提到的星期,月份,倍数之外,还存在很多周期问题

  • 月球绕地球运转昼夜,地球绕太阳运转产生的一年四季,中国农历年的24节气

  • 十五的月亮圆又圆

  • 循环小数中循环节数字的位数

  • 塑料的降解周期

  • 赌博中的点数

  • 数学上的周期函数

2 周期问题有哪些特点?

2.1 最小正周期

周期问题的周期是一个正数,可以是正整数,也可以是其他正数,如果能够找到一个有限的正数使之循环,那么一定存在一个最小的数使之循环,我们把这个最小的数称为最小正周期。比如一年12个月,这个12就是其最小正周期,且最小正周期的倍数还是其周期,如24也是其周期。

2.2 带余除法解决周期问题

研究周期问题不仅要发现其周期性规律更需要找到其最小正周期。我们说周期并不是说从某一个固定的起点开始,而是随意选取起点往后推移,比如我们选择星期一作为起点,那么过7天后是星期一,过8天后就是星期二;如果我们选择星期五作为起点,那么过7天后就是星期五了,过8天后就是星期六了,像这样,选择不同起点,经过不同时期的问题,我们可以利用第一讲的带余除法来解决,现在有两组序列

(1) 

(2) 

其中 是序号 对应的性质,且性质经过 次第一次出现重复。自然有人会问,前面 个性质和序号对应的工工整整,那么怎么知道 以后的某个序号 ( ) 对应的性质呢?这时候,我们可以利用带余除法用 去除 ,计算出余数

其中 便知道 对应的性质即为 对应的性质, 有时也叫步长, 叫步数。例如让 分别表示星期一,星期二,...,星期日,那么第108天是星期几呢?此时只需要计算

那么第108天对应的性质应该与3对应的性质 一致,即第108天是星期三。

3 经典习题

例1 今天是星期一,再过100天是星期几?

分析与解答 我们知道星期是7天一循环,今天是星期一,那么过7天又是星期一,再过7天又是星期一,这样每过7天就是星期一,说明7是其最小正周期,我们可以利用带余除法来计算

也就是经过14次循环,又回来星期一,这时候是过了 天,但是离100天还差2天,于是又过了两天就到了星期三,故再过100天是星期三。

例2 某小学为迎接六一儿童节,在学校操场边摆上鲜花,鲜花的摆放是按照2盆红色,3盆黄色,2盆粉色,1盆白色的顺序摆放,如此循环,请问

(1)第51盆鲜花是什么颜色?

(2)前51盆鲜花中,各种颜色的花分别有多少盆?

分析与解答 根据鲜花的摆放顺序,容易知道其最小正周期为 ,其中第一个2表示2盆红花,3表示3盆黄花,第二个2表示2盆粉花,1表示1盆白花,这样每8盆一循环,那么第51盆是什么颜色的花呢?我们只要利用带余除法进行计算出余数

余数为3,那么第51盆的花的颜色应该和这个最小正周期里面第3盆的颜色一样,即是黄色。

现在来看第二个问题,因为一个最小正周期里面的花的颜色和盆数是确定的,分别是2盆红色,3盆黄色,2盆粉色,1盆白色,前51盆鲜花中,有6个这样的周期,那么可以确定的是在这6个周期里面恰好有 盆红色, 盆黄色, 盆粉色, 盆白色,但是海有3盆是这6个周期之外的,故需要单独考虑,非常容易知道这3盆分别是2盆红花,1盆黄花,故红花要加2,黄花要加1,所以前51盆鲜花中有红花14盆,黄花19盆,粉花12盆,白花6盆。

例3 28个3相乘,积的个位数是多少?

分析与解答  通过找规律来确定若干个3相乘所得的积的个位数

乘积的个位数似乎第一次出现重复,故可以猜测数字3的若干个乘积的个位数字按3,9,7,1这样循环出现,可以往下算一个验证最小正周期是4,利用带余除法

余数为0说明恰好整除,即完全可以按照最小正周期划分,故28个3相乘的积的个位数恰好为最小正周期的最后一个,即个位数为1。

例3不是个例,正整数乘方的个位数的确呈现周期现象,如果 是一个正整数, 相乘记为 ,即

你可能感兴趣的:(周期问题)