initIntraMip函数主要是对参考像素进行下采样并为MIP矩阵乘法准备输入数据,函数结构如下:
块尺寸 | 下采样后的边界长度 m_reducedBdrySize |
矩阵乘法输出边界长度 m_reducedPredSize |
|
mipSizeId = 0 | 4x4 | 2 | 4 |
mipSizeId = 1 | 4xN、Nx4、8x8 | 4 | 4 |
mipSizeId = 2 | 其余块 | 4 | 8 |
initIntraMip函数主要是准备边界参考像素,并调用prepareInputForPred函数为MIP预测准备输入数据
注意:MIP使用的参考像素是未经过滤波的参考像素
initIntraMip函数代码如下所示:
void IntraPrediction::initIntraMip( const PredictionUnit &pu, const CompArea &area )
{
CHECK( area.width > MIP_MAX_WIDTH || area.height > MIP_MAX_HEIGHT, "Error: block size not supported for MIP" );
// prepare input (boundary) data for prediction
// 准备输入(边界)数据进行预测
// MIP使用未滤波的参考像素
CHECK( m_ipaParam.refFilterFlag, "ERROR: unfiltered refs expected for MIP" );
#if JVET_R0350_MIP_CHROMA_444_SINGLETREE
Pel *ptrSrc = getPredictorPtr(area.compID);//获取参考像素
const int srcStride = m_refBufferStride[area.compID];
const int srcHStride = 2;
m_matrixIntraPred.prepareInputForPred(CPelBuf(ptrSrc, srcStride, srcHStride), area,
pu.cu->slice->getSPS()->getBitDepth(toChannelType(area.compID)), area.compID);
#else
Pel *ptrSrc = getPredictorPtr( COMPONENT_Y );
const int srcStride = m_refBufferStride[COMPONENT_Y];
const int srcHStride = 2;
m_matrixIntraPred.prepareInputForPred( CPelBuf( ptrSrc, srcStride, srcHStride ), area, pu.cu->slice->getSPS()->getBitDepth( CHANNEL_TYPE_LUMA ) );
#endif
}
prepareInputForPred函数主要分为以下四个步骤:
prepareInputForPred函数代码如下所示
#if JVET_R0350_MIP_CHROMA_444_SINGLETREE
void MatrixIntraPrediction::prepareInputForPred(const CPelBuf &pSrc, const Area &block, const int bitDepth,
const ComponentID compId)
{
m_component = compId;
#else
void MatrixIntraPrediction::prepareInputForPred(const CPelBuf &pSrc, const Area& block, const int bitDepth)
{
#endif
// Step 1: Save block size and calculate dependent values
// Step 1: 保存块大小并计算MIP相关参数
initPredBlockParams(block);
// Step 2: Get the input data (left and top reference samples)
// Step 2: 获取输入数据(左上参考像素)
// 获取上一行参考像素
m_refSamplesTop.resize(block.width);
for (int x = 0; x < block.width; x++)
{
m_refSamplesTop[x] = pSrc.at(x + 1, 0);
}
// 获取左一列参考像素
m_refSamplesLeft.resize(block.height);
for (int y = 0; y < block.height; y++)
{
m_refSamplesLeft[y] = pSrc.at(y + 1, 1);
}
// Step 3: Compute the reduced boundary via Haar-downsampling (input for the prediction)
// Step 3: 通过Haar下采样计算缩减边界(预测输入)
// 下采样后输入向量的尺寸为4或者8
const int inputSize = 2 * m_reducedBdrySize;
// 不需要转置时,下采样像素的顺序:先上后左
m_reducedBoundary .resize( inputSize );
// 转置时,下采样像素的顺序:先左后上
m_reducedBoundaryTransposed.resize( inputSize );
int* const topReduced = m_reducedBoundary.data();
boundaryDownsampling1D( topReduced, m_refSamplesTop.data(), block.width, m_reducedBdrySize );
int* const leftReduced = m_reducedBoundary.data() + m_reducedBdrySize;
boundaryDownsampling1D( leftReduced, m_refSamplesLeft.data(), block.height, m_reducedBdrySize );
int* const leftReducedTransposed = m_reducedBoundaryTransposed.data();
int* const topReducedTransposed = m_reducedBoundaryTransposed.data() + m_reducedBdrySize;
for( int x = 0; x < m_reducedBdrySize; x++ )
{
topReducedTransposed[x] = topReduced[x];
}
for( int y = 0; y < m_reducedBdrySize; y++ )
{
leftReducedTransposed[y] = leftReduced[y];
}
// Step 4: Rebase the reduced boundary
// Step 4: 缩小边界
// 推导矩阵乘法输入向量p,mipSizeId=0/1和mipSizeId=2的推导方法不一样
m_inputOffset = m_reducedBoundary[0];
m_inputOffsetTransp = m_reducedBoundaryTransposed[0];
const bool hasFirstCol = (m_sizeId < 2);
m_reducedBoundary [0] = hasFirstCol ? ((1 << (bitDepth - 1)) - m_inputOffset ) : 0; // first column of matrix not needed for large blocks
m_reducedBoundaryTransposed[0] = hasFirstCol ? ((1 << (bitDepth - 1)) - m_inputOffsetTransp) : 0;
for (int i = 1; i < inputSize; i++)
{
m_reducedBoundary [i] -= m_inputOffset;
m_reducedBoundaryTransposed[i] -= m_inputOffsetTransp;
}
}
initPredBlockParams函数是用来初始化MIP相关参数,主要是根据当前块的尺寸来初始化mipSizeId,然后根据mipSizeId初始化下采样后的边界长度、矩阵乘法输出边界长度和上采样因子
void MatrixIntraPrediction::initPredBlockParams(const Size& block)
{
//获得当前块尺寸
m_blockSize = block;
// init size index
// 根据当前块尺寸初始化sizeId
m_sizeId = getMipSizeId( m_blockSize );
// init reduced boundary size
// 初始缩减边界尺寸
// 对于4x4的块宽度和高度分别缩减为2个像素
// 对于其余尺寸的块宽度和高度分别缩减为4个像素
m_reducedBdrySize = (m_sizeId == 0) ? 2 : 4;
// init reduced prediction size
// 初始化缩减预测后的尺寸
// 对于mipSizeId = 0、1的块,MIP预测后输出4x4的块
// 对于mipSizeId = 2的块,MIP预测后输出8x8的块
m_reducedPredSize = ( m_sizeId < 2 ) ? 4 : 8;
// init upsampling factors
// 初始上采样因子
m_upsmpFactorHor = m_blockSize.width / m_reducedPredSize;
m_upsmpFactorVer = m_blockSize.height / m_reducedPredSize;
CHECKD( (m_upsmpFactorHor < 1) || ((m_upsmpFactorHor & (m_upsmpFactorHor - 1)) != 0), "Need power of two horizontal upsampling factor." );
CHECKD( (m_upsmpFactorVer < 1) || ((m_upsmpFactorVer & (m_upsmpFactorVer - 1)) != 0), "Need power of two vertical upsampling factor." );
}
边界参考像素的下采样过程是由boundaryDownsampling1D函数实现的,下采样过程其实就是对边界参考像素求平均的过程,以8x8的块为例,如下图所示,上一行存在8个参考像素,通过对两两相邻的参考像素求平均后获得4个下采样后的参考像素,左一列参考像素地下采样过程同理。
/*
一维下采样
reducedDst表示下采样后的边界
fullSrc表示下采样前的边界
srcLen表示下采样前的边界长度
dstLen表示下采样后的边界长度
*/
void MatrixIntraPrediction::boundaryDownsampling1D(int* reducedDst, const int* const fullSrc, const SizeType srcLen, const SizeType dstLen)
{
if (dstLen < srcLen)
{
//当下采样后的边界尺寸小于当前块的边界尺寸时,需要进行下采样,下采样操作即相当于求平均操作
// Create reduced boundary by downsampling 通过下采样创建缩小边界
const SizeType downsmpFactor = srcLen / dstLen;
const int log2DownsmpFactor = floorLog2(downsmpFactor);
const int roundingOffset = (1 << (log2DownsmpFactor - 1));
SizeType srcIdx = 0;
for( SizeType dstIdx = 0; dstIdx < dstLen; dstIdx++ )
{
int sum = 0;
for( int k = 0; k < downsmpFactor; k++ )
{
sum += fullSrc[srcIdx++];
}
reducedDst[dstIdx] = (sum + roundingOffset) >> log2DownsmpFactor;
}
}
else
{
// Copy boundary if no downsampling is needed 如果不需要下采样,则复制边界
for (SizeType i = 0; i < dstLen; ++i)
{
reducedDst[i] = fullSrc[i];
}
}
}
下采样过程结束后,根据mipTransposeFlag标志将下采样后的上参考像素和左参考像素排列成向量pTemp,排列方式如下:
矩阵乘法输入向量的推导方法和mipSizeId有关,输入向量p的构造过程如下所示,其中inSize = 2*m_reducedBdrySize