- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2019-1-27晨间日记
紫薇忘了水葫芦
在柳州的第二天起床:八点半左右天气:晴心情:好像很复杂,一会儿开心一会儿不开心纪念日:参加了晗大姐的婚礼任务清单昨日完成的任务,最重要的三件事:⒈把之前的论文题目整理了一遍⒉参加了婚礼⒊送了礼物改进:要静下来多看些书做些运动,多思考。习惯养成:早睡早起,饮食清淡周目标·完成进度开始读论文学习·信息·阅读阅读健康·饮食·锻炼饮食清淡,多锻炼人际·家人·朋友多联系工作·思考怎么把自己的工作做得更好最美
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 论文学习笔记 POSEIDON: Privacy-Preserving Federated Neural Network Learning
JiangChSo
论文学习深度学习机器学习神经网络算法分布式
论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearningNDSS2021录用文章目录论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearning一、机器学习1.机器学习(ML)中的挑战2.隐私保护机器学习(PPML)二、POSEIDON方案1.系统和威胁模型2.方
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Python论文学习 -- 第二章 --- Python基础知识
Metallic Cat
学习
1.cmd命令器中如果想终止命令的话可以在终止行输入exit()函数调用停止命令一.字面量二.注释---对代码进行解释说明1.在print函数中:print(a,"asd",c)输出的结果为a变量对应的值+asd+c变量对应的值如:则输出的结果为:往type()函数中输入数据,它会返回数据的类型给我们,然后我们可以用print()函数将数据类型打出来1.值得注意的是变量本身是没有类型的,它只是一个
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- 2021-9-23晨间日记
言二yaner
今天是什么日子起床:7:40就寝:23:00天气:美好心情:美好纪念日:无任务清单昨日完成的任务,最重要的三件事:投稿改进:想到就做到习惯养成:专注自己,提升自己周目标·完成进度准备再写一篇论文学习·信息·阅读多阅读,多学习健康·饮食·锻炼早饭:小米粥,鸡蛋,烧麦中饭:真味卤,杨枝甘露晚饭:黑米粥锻炼:一小时左右人际·家人·朋友一切都是最好的安排,虽然没有过去,但也有属于自己的收获工作·思考凡事早
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 基于变长频带选择的JPEG图像可逆数据隐藏-文献学习
凌峰的博客
学习算法计算机视觉
论文学习原文题目:ReversibleDataHidingofJPEGImageBasedonAdaptiveFrequencyBandLength发表期刊:TCSVT2023(中科院1区)作者:NingxiongMao,HongjieHe,FanChen,YuanYuan,LingfengQu摘要JPEG图像在互联网上被广泛使用。基于quantifieddiscretecosinetransfo
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- Nerf-Wild神经辐射场论文学习笔记 Neural Radiance Fields for Unconstrained Photo Collections
出门吃三碗饭
Nerf学习记录三维重建学习笔记
前言:本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号:AI知识物语B站后续同步更新讲解本篇文章主要针对其数学公式来学习其内容,欢迎批评指正!!!(代码下篇出)1:摘要提出基于学习(learning-based)方法,使用野外照片的非结构化集合(unstructuredcollectionsofin-the-wildphotographs)来合成复杂场景。之前的N
- GroupMixFormer:Advancing Vision Transformers with Group-Mix Attention论文学习笔记
athrunsunny
Transformer学习笔记深度学习计算机视觉transformer
论文地址:https://arxiv.org/pdf/2311.15157.pdf代码地址:https://github.com/AILab-CVC/GroupMixFormer摘要:ViT已被证明可以通过使用多头自注意力(MHSA)对远程依赖关系进行建模来增强视觉识别,这通常被表述为Query-Key-Value计算。但是,从“Query”和“Key”生成的注意力图仅捕获单个粒度的token-t
- 论文学习——基于查询的workload预测(CMU)
_zhj
机器学习数据库
一、简介论文题目:Query-basedWorkloadForecastingforSelf-DrivingDatabaseManagementSystems发表在2018SIGMOD,来自cmu的数据库组(这个组真的很厉害)这篇论文主要讲数据库workload预测的问题。因为要实现数据库self-driving(如选择合适的时机在合适的列上自动创建索引),应该根据将要到来的查询对数据库进行优化,
- 第六十八周周报
童、一
周报深度学习
学习目标:项目论文学习时间:2023.12.23-2023.12.29学习产出:一、项目这周后两天在根据吉安方面的需求优化SQL,提升性能二、论文这周周六在杨老师的带领下仔细改了论文前两段,后面几天自己把剩下的改完了,目前还在给杨老师看。实验方面,由于LSUN一直跑不出好的效果,已经转为STL10和CelebA,预计得下周才能出结果。其他时间都在搞开题报告的东西。
- DN-DETR论文学习
彭祥.
DETR系列学习深度学习计算机视觉
摘要本文提出了一种新颖的去噪训练方法,以加快DETR(DEtectionTRansformer)训练,并加深了对类DETR方法的慢收敛问题的理解。我们表明,缓慢收敛是由于二分图匹配的不稳定性导致早期训练阶段的优化目标不一致。为了解决这个问题,除了匈牙利损失之外,我们的方法还向Transformer解码器馈送了带有噪声的GT边界框,并训练模型重建原始框,从而有效地降低了二分图匹配难度,并加快了收敛速
- MS-DETR: Efficient DETR Training with Mixed Supervision论文学习笔记
athrunsunny
Transformer学习笔记transformer深度学习算法
论文地址:https://arxiv.org/pdf/2401.03989.pdf代码地址(中稿后开源):GitHub-Atten4Vis/MS-DETR:Theofficialimplementationfor"MS-DETR:EfficientDETRTrainingwithMixedSupervision"摘要DETR通过迭代生成多个基于图像特征的目标候选者,并为每个真实目标分配一个候选者,
- 经典论文学习:Attention Is All You Need(Transformer)
才能我浪费
AI应用深度学习机器学习人工智能
1,概述《AttentionIsAllYouNeed》是一篇由GoogleDeepMind团队在2017年发表的论文,该论文提出了一种新的神经网络模型,称为Transformer模型,用于自然语言处理任务。该模型的创新点在于使用了一种称为“自注意力机制(self-attentionmechanism)”的技术,以取代传统的循环神经网络(RNN)和卷积神经网络(CNN)等结构,这使得模型在处理序列数
- 2022-6-17晨间日记
七翎
今天是什么日子起床:7.30(因为今天考科四,好困啊!!!)就寝:科四成功考过,熬个小夜(嘻嘻)天气:昨天下雨了,今天超凉快!心情:开心更多一点纪念日:纪念我拿上驾照的日子任务清单昨日完成的任务,最重要的三件事:刷完10套科四卷子✔习惯养成:早睡早起(尽量吧)周目标·完成进度1.完成编程课程2.看完导师论文学习·信息·阅读看了网文(嘻嘻)放纵一下健康·饮食·锻炼吃了很多不健康的食物,但很快乐!人际
- ChatGPT可以帮你做什么?
SiKi学院
chatgpt人工智能
学习利用ChatGPT学习有很多,比如:语言学习、编程学习、论文学习拆解、推荐学习资源等,使用方法大同小异,这里以语言学习为例。在开始前先给GPT充分的信息:(举例)【角色】充当一名有丰富经验的英语老师【背景】我是一名英语雅思备考的学生,想进行英语相关学习(这里最好说明是帮助你做什么练习,如口语)【任务】你要和我进行对话,根据我输入的内容,去进行讲解和说明【要求】我希望你首先可以列举出雅思备
- 【论文学习】SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING WITH SCORE-BASED GENERATIVE MODELS
Lyrig~
神经网络图像修复(ImageRestoration)学习机器学习算法
【论文学习】SOLVINGINVERSEPROBLEMSINMEDICALIMAGINGWITHSCORE-BASEDGENERATIVEMODELS前言相关概念线性逆问题基于分数的生成模型扰动过程逆过程采样利用基于分数的生成模型求解逆问题一种简便的线性测量过程形式将给定的观测结果融合进无条件采样过程前言好不容易写完了这么长的一篇,整体看来,这篇文章更像是对去噪过程的一个改进。通过在不同时间步引入
- 论文学习 使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建
Lyrig~
学习3d人工智能
论文学习使用基于NeRF的精炼特征从3D感知Diffusion模型下实现单视点下的人工重建论文连接前言摘要介绍相关工作2.13D生成的扩散模型2.2单视点下的新视点生成神经场(NeRF)以外的方法基于神经场(NeRF)的方法背景3.1图片条件NeRF3.2无几何视图合成NerfDiff论文连接NerfDiff:Single-imageViewSynthesiswithNeRF-guidedDist
- 【论文学习】InstructGPT:Training language models to follow instructions with human feedback
Shackles Lay
学习语言模型自然语言处理
前言:语言模型的输出依赖于预训练的数据集,研究者想要探索无监督领域的模型,使其仅仅依赖无标签的数据就可以实现不错的效果,为了让模型的泛化性能尽可能的强,研究者会提供尽可能大的数据集。但这样的训练方法存在两个问题:一、有效性。模型的性能依赖于训练时使用的文本,但是研究者并不知道无标签的大批量的数据集是否可以使模型学习到解决指定任务的能力,可能对于特定领域来说,模型根本没见过这样的数据;二、安全性,模
- 畸变矫正-深度学习相关论文学习
六个核桃Lu
畸变矫正深度学习学习人工智能
目录DocTr:DocumentImageTransformerforGeometricUnwarpingandIlluminationCorrectionSimFIR:ASimpleFrameworkforFisheyeImageRectificationwithSelf-supervisedRepresentationLearningModel-FreeDistortionRectificat
- A Fast Learning Algorithm for Deep Belief Nets - 论文学习
Mr,yu
论文笔记论文笔记MachineLearningDeepLearning
文章目录摘要介绍互补先验一个带约束权的无限有向模型限制玻尔兹曼机和对比散度学习一种转换表示的贪婪学习算法SomeIdeasBasedonDBNNonlinearDimensionalityReductionLearningSemanticAddressSpace(SAS)forFastDocumentRetrievalLearningNonlinearEmbeddings参考文献摘要explain
- 周四 2020-03-12 07:15 - 24:00 晴 06h54m
么得感情的日更机器
概述 早上6点20被闹钟搞醒,关了接着睡,7:14醒听听力、背单词、学习强国,练字,8:00下楼吃饭,8:30上楼读口语、做日计划。上午从9:00开始锁机学习相应SLAM论文综述,中间锻炼五分钟,跳的我腿好疼。11:00-11:35,对论文学习内容进行总结,编写论文记录文档。下午13:00-14:30看动漫,14:30-16:20整理计算机基本知识的文档。晚上看着手机发呆,然后讨论论文的事情,总
- smpl-x论文学习-部分翻译
ipv-tao
图形学三维重构
论文地址:ExpressiveBodyCapture:3DHands,Face,andBodyfromaSingleImage知乎大佬的讲解:https://zhuanlan.zhihu.com/p/137235901另一位大佬的讲解:https://posts.careerengine.us/p/5f23a5898988c12b4302afb61.定性结果和SMPL,SMPL-H相比,表现能力明
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod