如何使用Elasticsearch中的copy_to来提高搜索效率

在今天的这个教程中,我们来着重讲解一下如何使用Elasticsearch中的copy来提高搜索的效率。比如在我们的搜索中,经常我们会遇到如下的文档:

{
    "user" : "双榆树-张三",
    "message" : "今儿天气不错啊,出去转转去",
    "uid" : 2,
    "age" : 20,
    "city" : "北京",
    "province" : "北京",
    "country" : "中国",
    "address" : "中国北京市海淀区",
    "location" : {
      "lat" : "39.970718",
      "lon" : "116.325747"
    }
}

在这里,我们可以看到在这个文档中,我们有这样的几个字段:

 "city" : "北京",
 "province" : "北京",
 "country" : "中国",

它们是非常相关的。我们在想是不是可以把它们综合成一个字段,这样可以方便我们的搜索。假如我们要经常对这三个字段进行搜索,那么一种方法我们可以在must子句中使用should子句运行bool查询。这种方法写起来比较麻烦。有没有一种更好的方法呢?

我们其实可以使用Elasticsearch所提供的copy_to来提高我们的搜索效率。我们可以首先把我们的index的mapping设置成如下的项(这里假设我们使用的是一个叫做twitter的index)。

PUT twitter
{
  "mappings": {
    "properties": {
      "address": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "age": {
        "type": "long"
      },
      "city": {
        "type": "keyword",
        "copy_to": "region"
      },
      "country": {
        "type": "keyword",
        "copy_to": "region"
      },
      "province": {
        "type": "keyword",
        "copy_to": "region"
      },
      "region": {
        "type": "text",
        "store": true
      },
      "location": {
        "type": "geo_point"
      },
      "message": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "uid": {
        "type": "long"
      },
      "user": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}

在这里,我们特别注意如下的这个部分:

    "city": {
      "type": "keyword",
      "copy_to": "region"
    },
    "country": {
      "type": "keyword",
      "copy_to": "region"      
    },
    "province": {
      "type": "keyword",
      "copy_to": "region"
    },
    "region": {
      "type": "text"
    }

我们把city, country及province三个项合并成为一个项region,但是这个region并不存在于我们文档的source里。当我们这么定义我们的mapping的话,在文档被索引之后,有一个新的region项可以供我们进行搜索。

我们可以采用如下的数据来进行展示:

POST _bulk
{ "index" : { "_index" : "twitter", "_id": 1} }
{"user":"双榆树-张三","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
{ "index" : { "_index" : "twitter", "_id": 2 }}
{"user":"东城区-老刘","message":"出发,下一站云南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
{ "index" : { "_index" : "twitter", "_id": 3} }
{"user":"东城区-李四","message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
{ "index" : { "_index" : "twitter", "_id": 4} }
{"user":"朝阳区-老贾","message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
{ "index" : { "_index" : "twitter", "_id": 5} }
{"user":"朝阳区-老王","message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
{ "index" : { "_index" : "twitter", "_id": 6} }
{"user":"虹桥-老吴","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}

在Kibnana中执行上面的语句,它将为我们生产我们的twitter索引。同时我们可以通过如下的语句来查询我们的mapping:

如何使用Elasticsearch中的copy_to来提高搜索效率_第1张图片

我们可以看到twitter的mapping中有一个新的被称作为region的项。它将为我们的搜索带来方便。

那么假如我们想搜索country:中国,province:北京 这样的记录的话,我们可以只写如下的一条语句就可以了:

GET twitter/_search 
{
  "query": {
    "match": {
      "region": {
        "query": "中国 北京",
        "minimum_should_match": 4
      }
    }
  }
}

下面显示的是搜索的结果:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : 0.8114117,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "双榆树-张三",
          "message" : "今儿天气不错啊,出去转转去",
          "uid" : 2,
          "age" : 20,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市海淀区",
          "location" : {
            "lat" : "39.970718",
            "lon" : "116.325747"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "东城区-老刘",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "东城区-李四",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "朝阳区-老贾",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        }
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "5",
        "_score" : 0.8114117,
        "_source" : {
          "user" : "朝阳区-老王",
          "message" : "Happy BirthDay My Friend!",
          "uid" : 6,
          "age" : 50,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区国贸",
          "location" : {
            "lat" : "39.918256",
            "lon" : "116.467910"
          }
        }
      }
    ]
  }
}

这样我们只对一个region进行操作就可以了,否则我们需要针对country, city及province分别进行搜索。

 

如何查看copy_to的内容

在之前的mapping中,我们对region字段加入了如下的一个属性:

      "region": {
        "type": "text",
        "store": true
      }

这里的store属性为true,那么我们可以通过如下的命令来查看文档的region的内容:

GET twitter/_doc/1?stored_fields=region

那么它显示的内容如下:

{
  "_index" : "twitter",
  "_type" : "_doc",
  "_id" : "1",
  "_version" : 1,
  "_seq_no" : 0,
  "_primary_term" : 1,
  "found" : true,
  "fields" : {
    "region" : [
      "北京",
      "北京",
      "中国"
    ]
  }
}

如果你想了解更多关于Elastic Stack,请参阅文章“Elasticsearch简介”

 

你可能感兴趣的:(Elastic)