UVA 11809 - Floating-Point Numbers

时间限制:3.000秒

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=830&page=show_problem&problem=2909


  算是个数学题吧,虽然在AOAPC上面给放到象征水题的第三章里面了。

  这个题基本就是帮着你复习了一遍浮点数的存储方式了。浮点数在计算机里是分三部分表示的,最前面一位表示符号,后面一部分是尾数,最后一部分是阶码,表示方法类似于科学记数法,不过是二进制的,尾数是M阶码是E的话那么表示起来就是M × 2^E了。然后对于M还有一个要求,就是1/2 ≤ M < 1,所以用二进制表示M的话就应该是0.1XX……,用计算机表示的时候就把最前面的“0.1”这个永远不变的部分给省略掉,只表示可能变化的部分。阶码部分则是只用二进制表示E。

  UVA 11809 - Floating-Point Numbers_第1张图片

  上面的图就给出了一个例子,前面的0表示是正数。后面8位表示尾数m,这里是0.111111111(注意后面是9个1,因为头一个省略了)。之后那个0表示分割,最后面6位表示e的二进制为111111。所以这个数就是,用十进制表示就是

  在计算机中用二进制表示M和E的时候如果位数不同,那么它们所能表示的最大值也不同。现在给你所能够表示的最大的浮点数的值,让你倒回去求M和E分别有多少位。输入格式为AeB,表示最大浮点数为,并且0 < A < 10,并且保证输出的结果中0 ≤ M ≤ 9且1 ≤ E ≤ 30。输入以0e0表示结束,0e0本身不计算。


  这个如果直接去算的话相当麻烦,当E很大的时候数会直接超出上限。这个时候可以反过来想,最大的时候M和E的每一位肯定都是1,并且又有0 ≤ M ≤ 9且1 ≤ E ≤ 30的限定,所以一共只有300种情况,自然就想到了打表,先用二重循环枚举M和E可能出现位数的所有情况打一张表,然后输入的时候倒回去找即可。


  假设当前一层M和E的值为m和e,它们的位数分别为i和j。

  首先计算m的值,用二进制表示的话,m的值为0.11…,也就是m = 2^(-1) + 2^(-2) + … + 2^(-1 - i)(i比实际1的个数少1个),也就是m = 1 - 2^(-1 - i)。

  接下来就是计算e的值,不难得出,e = 2^j - 1。

  那么也就有m * 2^e = A * 10^B,似乎可以直接计算了。然而,直接这样算的话是不行的,因为当e太大的话(e最大可以是1073741823,注意这还只是2的指数),等号左边的数就会超出上限,所以要想继续算下去,就得自己去想办法再写出满足要求的类来,这显然太麻烦了。所以,这个时候我们对等式两边同时取对数,这个时候就有 log10(m) + e × log10(2) = log10(A) + B。因为此时m和e的值都是确定的,所以不妨令等式左边为t,也就有t = log10(A) + B。


  这个时候就有问题了,A和B怎么算。

  写题解的时候突然意识到了这个问题,读题的时候很多人,包括我,都把AeB默认为了科学记数法,在ACM协会群里面讨论的时候很多人也都说这是科学计数法。先来看如果是科学记数法的时候应该怎么办。

  如果是科学记数法的话,那么对于A,就有1 ≤ A < 10。那么0 < log10(A) < 1。所以t的小数部分就是log10(A),整数部分就是B,即B = ⌊t⌋,A = 10^(t - B)。那么接下来,我们只需要开出两个二维数组来,分别记录对应i和j下A和B的大小,之后从输入里提取出A和B的大小,去二维数组里面查找对应的i和j即可。

  这种办法在UVA上面是可以直接AC的,但是我却感觉这题这样A了有点数据太水的感觉,秉着处女座+强迫症死磕到底的精神,我们看下哪里有问题。

  其实回头读下题,我们发现科学记数法1 ≤ A < 10的条件是我们脑补出来的,题目里面根本没有提及,只是简单交待0 < A < 10。也就是说,对于确定的M和E的位数,十进制的表示可以有多种,例如样例中的5.699141892149156e76,下面的数据应当也是完全可能的,而且结果应当与样例的结果是相同的(当然是在保证精度可以计算出结果的前提下):

0.569914189214915e77
0.056991418921491e78
0.005699141892149e79
0.000569914189214e80
  带着这个想法我分别拿着上面的数据去UVA toolkit和uDebug上试了试, UVA toolkit依旧能够输出“5 8”的结果来,但是uDebug告诉我我的输入不合法……果真是我想多了么……

  不过这个问题也好办,还是看上面的数据,忽略掉后面几位精度丢失的问题的话,上面的几个数完全可以通过“A *= 10, B -= 1”或者“A /= 10, B += 1”的操作来相互转化。那么对于0 < A < 1的A的值,我们就可以通过“A *= 10, B -= 1”的操作来使其满足科学记数法的条件。


  另外,在查表的时候还应该注意精度的问题,15位有效数字对于double来说精度似乎也不够,而且计算出所需要的整数值其实需要的精度也没有那么高,所以这里的精度就只用到了1e-4的程度。


#include 
#include 
#include 
#include 

using namespace std;

int main() {
    double M[20][40];
    long long E[20][40];

    // 打表
    for(int i = 0; i <= 9; ++i) for(int j = 1; j <= 30; ++j) {
        double m = 1 - pow(2, -1 - i), e = pow(2, j) - 1;
        double t = log10(m) + e * log10(2);
        E[i][j] = t, M[i][j] = pow(10, t - E[i][j]);
    }

    // 输入并输出结果
    string in;
    while(cin >> in && in != "0e0") {
        // 处理输入
        for(string::iterator i = in.begin(); i != in.end(); ++i) if(*i == 'e') *i = ' ';
        istringstream ss(in);
        double A; int B;
        ss >> A >> B;
        while(A < 1) A *= 10, B -= 1;
        // 在打好的表中寻找答案
        for(int i = 0; i <= 9; ++i) for(int j = 1; j <= 30; ++j) {
            if(B == E[i][j] && (fabs(A - M[i][j]) < 1e-4 || fabs(A / 10 - M[i][j]) < 1e-4)) {
                cout << i << ' ' << j << endl;
                break;
            }
        }
    }
}


你可能感兴趣的:(-,-,-,-,UVA,算法竞赛及其相关,-,-,题目)