- 最小二乘法(OLS)python 实践
参考链接:1,基本原理:https://zhuanlan.zhihu.com/p/1492809412,python实现:https://zhuanlan.zhihu.com/p/22692029实现结果线性回归:#--coding:utf-8--#简单线性回归demoimportnumpyasnpimportmatplotlib.pyplotaspltimportstatsmodels.apia
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- 使用AutoKeras2.0的AutoModel进行结构化数据回归预测
1、FirstofAll:ReadTheFuckingSourceCodeimportautokerasasakimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportmean_squared_error#生成数据集np.random.seed(42)x=np.random.r
- python --飞浆离线ocr使用/paddleocr
依赖#python==3.7.3paddleocr==2.7.0.2paddlepaddle==2.5.2loguru==0.7.3frompaddleocrimportPaddleOCRimportcv2importnumpyasnpif__name__=='__main__':OCR=PaddleOCR(use_doc_orientation_classify=False,#检测文档方向use
- 深度解析:venv和conda如何解决依赖冲突难题
咕咕日志
condapython
文章目录前言一、虚拟环境的核心价值1.1依赖冲突的典型场景1.2隔离机制实现原理二、venv与conda的架构对比2.1工具定位差异2.2性能基准测试(以创建环境+安装numpy为例)三、venv的配置与最佳实践3.1基础工作流3.2多版本Python管理四、conda的进阶应用4.1环境创建与通道配置4.2混合使用conda与pip的风险控制4.3跨平台环境导出五、工具选型决策树5.1场景化推荐
- AttributeError: ‘numpy.ndarray‘ object has no attribute ‘unsqueeze‘
ddfa1234
numpypython深度学习
z=z*pts_depth.unsqueeze(1)*0.1AttributeError:'numpy.ndarray'objecthasnoattribute'unsqueeze'这个错误是因为unsqueeze()方法是PyTorch张量的方法,而不是NumPy数组的方法。在这里,pts_depth是一个NumPy数组,因此不能使用unsqueeze()方法。如果要在NumPy中实现类似于un
- 第一章Pandas快速入门
Hajo_
深入浅出Pandas学习代码pythonpandas
《深入浅出Pandas》第一章代码数据来源:https://www.gairuo.com/file/data/dataset/team.xlsximportnumpyasnpimportpandasaspdfile_path='E:\\Data_python\\anconda_code\\Dive_into_Pandas\\data_files\\'team_path='team.xlsx'tea
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- python实现多元线性回归算法 (附完整源码)
源代码大师
python算法完整教程算法python线性回归
python实现多元线性回归算法1.使用正规方程实现多元线性回归代码说明运行结果示例2.使用梯度下降法实现多元线性回归代码说明运行结果示例进一步优化与注意事项下面是使用Python从头实现多元线性回归算法的完整源码。这个实现利用了numpy进行矩阵运算,并展示了如何训练模型、进行预测以及评估模型性能。为了更全面,代码中还包含了一个使用梯度下降法(GradientDescent)优化参数的实现。多元
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- python 求向量间内积 和外积
#内积可以描述向量间的投影关系,大小为|a||b|cos⟨a,b⟩:python向量内积求向量长度:importnumpyasnpa=np.asarray([1,1,1])print(np.sqrt(a.dot(a
- python内积 卷积
AI算法网奇
python基础python开发语言
内积就是点乘,卷积先取反。importnumpyasnpbb=[1,2]cc=[2,3]aa=np.dot(bb,cc)print(aa)dd=np.convolve([2,1],cc,'valid')print(dd)dd=np.convolve(bb,cc,'same')print(dd)dd=np.convolve(bb,cc,'full')print(dd)结果:8[8][27][276]
- Day.49
m0_64714591
机器学习深度学习人工智能
cbam训练:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transformsfromtorch.utils.dataimportDataLoaderimportmatplotlib.pyplotaspltimportnumpyasnpplt.rcParams["font.fa
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- DAY 51 复习日
忧陌606
Python打卡python
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高(一)Day43代码importosimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- 科比投篮预测——数据处理与分析
Ssaty.
python机器学习数据挖掘
第1关:数据清洗importnumpyasnpimportpandasaspdimportwarningswarnings.filterwarnings("ignore")pd.set_option('display.max_columns',1000)pd.set_option(<
- 大数据分析技术的学习路径,不是绝对的,仅供参考
水云桐程序员
学习大数据数据分析学习方法
阶段一:基础筑基(1-3个月)1.编程语言:Python:掌握基础语法、数据结构、流程控制、函数、面向对象编程、常用库(NumPy,Pandas)。SQL:精通SELECT语句(过滤、排序、分组、聚合、连接)、DDL/DML基础。理解关系型数据库概念(表、主键、外键、索引)。MySQL或PostgreSQL是很好的起点。Java/Scala:深入理解Hadoop/Spark等框架会更有优势。初学者
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- Python训练营-Day18
importpandasaspdimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings("ignore")plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes
- Python训练营-Day20
importpandasaspdimportpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings("ignore")plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes
- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- python 中值滤波
search7
python
中值滤波是数字信号处理和数字图像处理领域使用较多的预处理技术,使用邻域内所有信号的中位数替换中心像素的值,可以在滤除异常值的情况下较好地保留纹理信息。该技术会在一定程度上造成图像模糊和失真,滤波窗口变大时会非常明显。importnumpyasnpfromPILimportImageimportscipy.signalassignalim=Image.open('lena.jpg')data=[]w
- python使用sqllite处理db文件中的图片存读问题
clown_38501
数据库python
脚本如下:#1.SQlite原生类型:BLOB对应python的bytes字节码"""date:2024.03.04author:clownpython3使用sqlite3处理db类型文件中图片存读"""importsysimportsqlite3importbase64importcv2importnumpyasnpprint("python版本:",sys.version)#3.6.8(tag
- python-numpy-常用函数详解
木心心以向荣
python-numpynumpypython开发语言
文章目录一、函数详解np.empty(num_points)np.zeros(shape,dtype=float,order='C')np.tile(A,reps)np.newaxisnp.stack(arrays,axis=0)np.roll(a,shift,axis=None)np.repeat(a,repeats,axis=None)arr.reshape(shape)arr.ravel()
- 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
零光速
数据分析numpy矩阵python开发语言数据结构
np.dot()np.dot()在NumPy中既可以用于向量的点积,也可以用于矩阵乘法,这两种运算的本质不同,取决于输入是向量还是矩阵。1.点积(DotProduct)定义当np.dot()的输入是两个一维向量时,计算的是点积,即两个向量的对应元素相乘并求和,结果是一个标量。公式对于两个n维向量a=[a1,a2,…,an]和b=[b1,b2,…,bn]点积的计算公式为:a⋅b=a1*b1+a2*b
- padans取某列指定数据
苏黎caius
我的pandas使用日记pandaspython数据分析
padans取某列指定数据我的pandas使用日记一、pandas是什么?pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库(当然,下面是示例,用到什么引什么,用不到numpy啥的就别引了)代码如下(示例):importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportseabor
- 阿里云ECS(Ubuntu 20.04 64位)安装Python失败
无艳影
python阿里云开发语言
最近申请了一台阿里云ECS作为开发和部署环境,想用来作为Web后台服务器。操作系统选择了Ubuntu20.0464位版本,网站后台采用pythonFlask框架。由于后台程序需要处理大规模数据,因此配置环境时除需要安装python和Flask之外,还需要安装pandas和numpy等library。起初我下载了python3.9.15版本,安装python解释器后又依次安装flask和pandas
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置