第一范式:1NF是对属性的原子性约束,要求属性(列)具有原子性,不可再分解;(只要是关系型数据库都满足1NF)
第二范式:2NF是对记录的惟一性约束,表中的记录是唯一的, 就满足2NF, 通常我们设计一个主键来实现,主键不能包含业务逻辑。
第三范式:3NF是对字段冗余性的约束,它要求字段没有冗余。 没有冗余的数据库设计可以做到。
但是,没有冗余的数据库未必是最好的数据库,有时为了提高运行效率,就必须降低范式标准,适当保留冗余数据。具体做法是: 在概念数据模型设计时遵守第三范式,降低范式标准的工作放到物理数据模型设计时考虑。降低范式就是增加字段,允许冗余。
满处一下条件的字段,才应该创建索引
在group by 后面增加 order by null 就可以防止排序. explain select * from emp group by deptno order by null;
select * from dept, emp where dept.deptno=emp.deptno; [简单处理方式]
select * from dept left join emp on dept.deptno=emp.deptno; [左外连接,更ok!]
select id from t where num is null
最好不要给数据库留 NULL,尽可能的使用 NOT NULL 填充数据库. 备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用 NULL。
不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL 也包含在内),都是占用 100 个字符的空间的,如果是 varchar 这样的变长字段, null 不占用空间。
可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:
select id from t where num = 0
4.1、垂直拆分
垂直拆分就是要把表按模块划分到不同数据库表中(当然原则还是不破坏第三范式),这种拆分在大型网站的演变过程中是很常见的。当一个网站还在很小的时候,只有小量的人来开发和维护,各模块和表都在一起,当网站不断丰富和壮大的时候,也会变成多个子系统来支撑,这时就有按模块和功能把表划分出来的需求。其实,相对于垂直切分更进一步的是服务化改造,说得简单就是要把原来强耦合的系统拆分成多个弱耦合的服务,通过服务间的调用来满足业务需求看,因此表拆出来后要通过服务的形式暴露出去,而不是直接调用不同模块的表,淘宝在架构不断演变过程,最重要的一环就是服务化改造,把用户、交易、店铺、宝贝这些核心的概念抽取成独立的服务,也非常有利于进行局部的优化和治理,保障核心模块的稳定性
垂直拆分用于分布式场景。
4.2、水平拆分
上面谈到垂直切分只是把表按模块划分到不同数据库,但没有解决单表大数据量的问题,而水平切分就是要把一个表按照某种规则把数据划分到不同表或数据库里。例如像计费系统,通过按时间来划分表就比较合适,因为系统都是处理某一时间段的数据。而像SaaS应用,通过按用户维度来划分数据比较合适,因为用户与用户之间的隔离的,一般不存在处理多个用户数据的情况,简单的按user_id范围来水平切分
通俗理解:水平拆分行,行数据拆分到不同表中, 垂直拆分列,表数据拆分到不同表中
水平分割案例
思路:在大型电商系统中,每天的会员人数不断的增加。达到一定瓶颈后如何优化查询。
可能大家会想到索引,万一用户量达到上亿级别,如何进行优化呢?
使用水平分割拆分数据库表。
如何使用水平拆分数据库
使用水平分割拆分表,具体根据业务需求,有的按照注册时间、取摸、账号规则、年份等。
4.3、使用取摸方式分表
在数据库集群架构中,让主库负责处理事务性查询,而从库只负责处理select查询,让两者分工明确达到提高数据库整体读写性能。当然,主数据库另外一个功能就是负责将事务性查询导致的数据变更同步到从库中,也就是写操作。
读写分离的好处
1)分摊服务器压力,提高机器的系统处理效率
读写分离适用于读远比写的场景,如果有一台服务器,当select很多时,update和delete会被这些select访问中的数据堵塞,等待select结束,并发性能并不高,而主从只负责各自的写和读,极大程度的缓解X锁和S锁争用;
假如我们有1主3从,不考虑上述1中提到的从库单方面设置,假设现在1分钟内有10条写入,150条读取。那么,1主3从相当于共计40条写入,而读取总数没变,因此平均下来每台服务器承担了10条写入和50条读取(主库不承担读取操作)。因此,虽然写入没变,但是读取大大分摊了,提高了系统性能。另外,当读取被分摊后,又间接提高了写入的性能。所以,总体性能提高了,说白了就是拿机器和带宽换性能;
2)增加冗余,提高服务可用性,当一台数据库服务器宕机后可以调整另外一台从库以最快速度恢复服务
主从复制原理
依赖于二进制日志,binary-log.
二进制日志中记录引起数据库发生改变的语句
Insert 、delete、update、create table