深度学习花书学习笔记 第九章 卷积网络

卷积运算

内积和外积中的内积被通常认为时卷积,可交换性是因为他经过了翻转。但是神经网络中一般不应用翻转。而是直接使用互相关函数:

S(i,j) = (I*K)(i,j) =\sum \sum I(i + m,j + n)K(m,n).

深度学习花书学习笔记 第九章 卷积网络_第1张图片

动机

三大特性:稀疏交互、参数共享、等变表示。

稀疏交互:核的大小远小于输入。相对于全连接,一个输入项只影响较少神经元,大大减少运算量。

参数共享:也叫绑定权重,每个核的权重不变,遍历整个输入。使我们只需要少量参数,

等变表示:卷积网络具有平移等变的性质。

池化

应用于卷积层和激活层之后,调整输出。使其更容易运算并具有一定的平移不变性。并在一些需要处理不同大小的输入输出时很有用。

主要有:maxpool、averagepool、ROI池化,前两个就是取最大值和取均值,还有个取最多值的池化。特殊的是ROI池化,这里简单介绍一下:ROI:感兴趣区域

ROI池化:将不同大小的ROI池化为相同大小。步骤如下:

  1. 根据输入,将ROI映射到feature map上
  2. 根据输出块大小,将ROI区域划分为大小相近的块。比如输出是2*2,就划分为2*2块,每块大小相近
  3. 每块进行max pooling

卷积与池化作为一种无限强的先验

卷积:学得函数只包含局部连接关系并具有平移不变性。

池化:每个单元都具有对少量平移的不变性。

当先验不成立时不好用了就。

基本卷积函数的变体

padding方式:对最边缘的数据进行填充以保持大小不变性。主要三种方式:

  1. valid方式:不填充,最终输出图像m-k+1.
  2. same:填0保持输入输出大小不变。
  3. full:填0足够多,保持每个像素在每个方向被访问k次,最终输出图像看睹m+k-1.

平铺卷积:

。。。

结构化输出

意思就是能力强,可以输出各种类型吧。。举例是注意力模型。

数据类型

没看懂表述的意义,就是说卷积网络可以处理不同尺度的输入输出呗。。金字塔模型么比如。

高效的卷积算法

一个d维的核可以表示为d个向量的外积时,表示其可分离。可以使用分离后矩阵代替,大大降低参数量,提高预算速度。inception网络采用了此方式。

随机或无监督的特征

三种方式:

  1. 简单随机化特征核
  2. 人工设置,如sift特征,锐化特征等
  3. 使用无监督标准学习核。

已经不流行了,相对于监督训练可以提供一些正则化,允许我们训练更大的结构。

卷积网络的神经科学基础

V1:初级视觉皮层。卷积网络主要覆盖其三大特性:空间映射、简单细胞、复杂细胞。

主流卷积神经网络介绍:

Fast-RCNN

 

你可能感兴趣的:(机器学习,深度学习花书,读书笔记)