Deep Deterministic Policy Gradient是DeepMind团队为Actor-Critic方法打造的升级版本,其实也就是Actor-critic和DQN的融合版本。下面给出示例程序,程序来源自网络。
'''
torch = 0.41
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
import time
##################### hyper parameters ####################
MAX_EPISODES = 200
MAX_EP_STEPS = 200
LR_A = 0.001 # learning rate for actor
LR_C = 0.002 # learning rate for critic
GAMMA = 0.9 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 10000
BATCH_SIZE = 32
TAU = 0.01
RENDER = False
ENV_NAME = 'Pendulum-v0'
############################### DDPG ####################################
class ANet(nn.Module): # ae(s)=a
def __init__(self,s_dim,a_dim):
super(ANet,self).__init__()
self.fc1 = nn.Linear(s_dim,30)
self.fc1.weight.data.normal_(0,0.1) # initialization
self.out = nn.Linear(30,a_dim)
self.out.weight.data.normal_(0,0.1) # initialization
def forward(self,x):
x = self.fc1(x)
x = F.relu(x)
x = self.out(x)
x = F.tanh(x)
actions_value = x*2
return actions_value
class CNet(nn.Module): # ae(s)=a
def __init__(self,s_dim,a_dim):
super(CNet,self).__init__()
self.fcs = nn.Linear(s_dim,30)
self.fcs.weight.data.normal_(0,0.1) # initialization
self.fca = nn.Linear(a_dim,30)
self.fca.weight.data.normal_(0,0.1) # initialization
self.out = nn.Linear(30,1)
self.out.weight.data.normal_(0, 0.1) # initialization
def forward(self,s,a):
x = self.fcs(s)
y = self.fca(a)
net = F.relu(x+y)
actions_value = self.out(net)
return actions_value
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,):
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32) # s,s_,a,r
self.pointer = 0
#self.sess = tf.Session()
self.Actor_eval = ANet(s_dim,a_dim)
self.Actor_target = ANet(s_dim,a_dim)
self.Critic_eval = CNet(s_dim,a_dim)
self.Critic_target = CNet(s_dim,a_dim)
self.ctrain = torch.optim.Adam(self.Critic_eval.parameters(),lr=LR_C)
self.atrain = torch.optim.Adam(self.Actor_eval.parameters(),lr=LR_A)
self.loss_td = nn.MSELoss()
def choose_action(self, s):
s = torch.unsqueeze(torch.FloatTensor(s), 0)
return self.Actor_eval(s)[0].detach() # ae(s)
def learn(self):
for x in self.Actor_target.state_dict().keys():
eval('self.Actor_target.' + x + '.data.mul_((1-TAU))')
eval('self.Actor_target.' + x + '.data.add_(TAU*self.Actor_eval.' + x + '.data)')
for x in self.Critic_target.state_dict().keys():
eval('self.Critic_target.' + x + '.data.mul_((1-TAU))')
eval('self.Critic_target.' + x + '.data.add_(TAU*self.Critic_eval.' + x + '.data)')
# soft target replacement
#self.sess.run(self.soft_replace) # 用ae、ce更新at,ct
indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
bt = self.memory[indices, :]
bs = torch.FloatTensor(bt[:, :self.s_dim])
ba = torch.FloatTensor(bt[:, self.s_dim: self.s_dim + self.a_dim])
br = torch.FloatTensor(bt[:, -self.s_dim - 1: -self.s_dim])
bs_ = torch.FloatTensor(bt[:, -self.s_dim:])
a = self.Actor_eval(bs)
q = self.Critic_eval(bs,a) # loss=-q=-ce(s,ae(s))更新ae ae(s)=a ae(s_)=a_
# 如果 a是一个正确的行为的话,那么它的Q应该更贴近0
loss_a = -torch.mean(q)
#print(q)
#print(loss_a)
self.atrain.zero_grad()
loss_a.backward()
self.atrain.step()
a_ = self.Actor_target(bs_) # 这个网络不及时更新参数, 用于预测 Critic 的 Q_target 中的 action
q_ = self.Critic_target(bs_,a_) # 这个网络不及时更新参数, 用于给出 Actor 更新参数时的 Gradient ascent 强度
q_target = br+GAMMA*q_ # q_target = 负的
#print(q_target)
q_v = self.Critic_eval(bs,ba)
#print(q_v)
td_error = self.loss_td(q_target,q_v)
# td_error=R + GAMMA * ct(bs_,at(bs_))-ce(s,ba) 更新ce ,但这个ae(s)是记忆中的ba,让ce得出的Q靠近Q_target,让评价更准确
#print(td_error)
self.ctrain.zero_grad()
td_error.backward()
self.ctrain.step()
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, [r], s_))
index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
self.memory[index, :] = transition
self.pointer += 1
############################### training ####################################
env = gym.make(ENV_NAME)
env = env.unwrapped
env.seed(1)
s_dim = env.observation_space.shape[0]
a_dim = env.action_space.shape[0]
a_bound = env.action_space.high
ddpg = DDPG(a_dim, s_dim, a_bound)
var = 3 # control exploration
t1 = time.time()
for i in range(MAX_EPISODES):
s = env.reset()
ep_reward = 0
for j in range(MAX_EP_STEPS):
if RENDER:
env.render()
# Add exploration noise
a = ddpg.choose_action(s)
a = np.clip(np.random.normal(a, var), -2, 2) # np.random.normal(mean,std) 表示为一个正态分布 np.clip表示Limit the value between -2 and 2
s_, r, done, info = env.step(a)
ddpg.store_transition(s, a, r / 10, s_)
if ddpg.pointer > MEMORY_CAPACITY: # wait for the memory pool being full at first
var *= .9995 # decay the action randomness
ddpg.learn()
s = s_
ep_reward += r
if j == MAX_EP_STEPS-1:
print('Episode:', i, ' Reward: %i' % int(ep_reward), 'Explore: %.2f' % var, )
if ep_reward > -300:RENDER = True
break
print('Running time: ', time.time() - t1)