(转)Python3:pyecharts数据可视化插件

Python3:pyecharts数据可视化插件

一、简介

pyecharts 是一个用于生成 Echarts 图表的类库。 Echarts 是百度开源的一个数据可视化 JS 库。主要用于数据可视化。

二、安装

pip install pyecharts

在线安装不成功,采用离线插件whl安装:

(1)下载:pyecharts-0.1.9.4-py2.py3-none-any.whl

(2)然后进入到所咋的文件夹,执行安装命令:

D:\whl>pip install pyecharts-0.1.9.4-py2.py3-none-any.whl

三、示例

1,代码:

from pyecharts import Bar
bar =Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()

2,效果:

(转)Python3:pyecharts数据可视化插件_第1张图片

3,分析:

  Tip:可以按右边的下载按钮将图片下载到本地;

  • add():主要方法,用于添加图表的数据和设置各种配置项

  • show_config():打印输出图表的所有配置项

  • render():默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:my_first_chart.html"),文件用浏览器打开。

  默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,编码的处理是个很头疼的问题,暂时没能找到完美的解决方法,目前只能通过文本编辑器自己进行二次编码,我用的是 Visual Studio Code,先通过 Gbk 编码重新打开,然后再用 UTF-8 重新保存,这样用浏览器打开的话就不会出现中文乱码问题了。

  基本上所有的图表类型都是这样绘制的:

  1. chart_name = Type() 初始化具体类型图表。

  2. add() 添加数据及配置项。

  3. render() 生成 .html 文件。

四、图表类型

1,Bar(柱状图/条形图)

1.1 示例1:

复制代码

from pyecharts import Bar
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[20, 40, 60, 80, 100, 120]
v2 =[10, 20, 30, 40, 120, 80]
bar =Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()

复制代码

 效果:

(转)Python3:pyecharts数据可视化插件_第2张图片

1.2 示例2:

复制代码

from pyecharts import Bar
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[20, 40, 60, 80, 100, 120]
v2 =[10, 20, 30, 40, 120, 80]
bar =Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第3张图片

2,EffectScatter(带有涟漪特效动画的散点图)

复制代码

#示例2:EffectScatter(带有涟漪特效动画的散点图)
from pyecharts import EffectScatter
v1 =[10, 20, 30, 40, 50, 60]
v2 =[25, 20, 15, 10, 60, 33]
es =EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es =EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第4张图片

3,Funnel(漏斗图)

复制代码

#示例四:Funnel(漏斗图)
from pyecharts import Funnel
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value =[20, 40, 60, 80, 100, 120]
funnel =Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第5张图片

4,Gauge(仪表盘)

复制代码

#示例五: Gauge(仪表盘)
from pyecharts import Gauge 
gauge =Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第6张图片

5,Geo(地理坐标系)

5.1 示例1:

复制代码

#示例5: Geo(地理坐标系)
#5.1
from pyecharts import Geo 
data=[("海门",9),("鄂尔多斯",12),("招远",12),("舟山",12),("齐齐哈尔",14),("盐城",15),("赤峰",16),("青岛",18),("乳山",18),("金昌",19),("泉州",21),("莱西",21), ("日照",21),("胶南",22),("南通",23),("拉萨",24),("云浮",24),("梅州",25)]
geo=Geo("全国主要城市空气质量","data from pm2.5",title_color="#fff",title_pos="center",width=1200,height=600,background_color='#404a59')
attr,value=geo.cast(data)
geo.add("",attr,value,visual_range=[0,200],visual_text_color="#fff",symbol_size=15,is_visualmap=True)
geo.show_config()
geo.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第7张图片

5.2 示例2:

复制代码

#6.2
from pyecharts import Geo 
data =[("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo =Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600, background_color='#404a59')
attr, value =geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第8张图片

6, Graph(关系图)

6.1 示例1:

复制代码

#示例6:Graph(关系图)
#6.1
from pyecharts import Graph
nodes =[{"name": "结点1", "symbolSize": 10}, {"name": "结点2", "symbolSize": 20}, {"name": "结点3", "symbolSize": 30}, {"name": "结点4", "symbolSize": 40}, {"name": "结点5", "symbolSize": 50}, {"name": "结点6", "symbolSize": 40}, {"name": "结点7", "symbolSize": 30}, {"name": "结点8", "symbolSize": 20}]
links =[]
for i in nodes: 
    for j in nodes: 
        links.append({"source": i.get('name'), "target": j.get('name')})
        graph =Graph("关系图-环形布局示例")
        graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
        graph.show_config()
        graph.render()

复制代码

效果:

 (转)Python3:pyecharts数据可视化插件_第9张图片

6.2 示例2:

复制代码

#6.2
from pyecharts import Graph
import json 
with open("..jsonweibo.json","r",encoding="utf-8") as f:
    j =json.load(f)
nodes, links,categories,cont,mid,userl=jgraph=Graph("微博转发关系图", width=1200, height=600)
graph.add("",nodes,links,categories,label_pos="right", repulsion=50, is_legend_show=False, line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()

复制代码

效果:待测试

7,Line(折线/面积图)

7.1 示例1:

复制代码

#示例7:Line(折线/面积图)
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第10张图片

7.2 示例2:

复制代码

#7.2
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第11张图片

7.3 示例3:

复制代码

#7.3
from pyecharts import Line
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[5, 20, 36, 10, 10, 100]
v2 =[55, 60, 16, 20, 15, 80]
line =Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第12张图片

8,Liquid(水球图)

8.1 示例1:

复制代码

#8.1
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第13张图片

8.2 示例2:

复制代码

#8.2
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid.show_config()
liquid.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第14张图片

8.3 示例3:

复制代码

#8.3
from pyecharts import Liquid
liquid =Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第15张图片

9,Map(地图)

9.1 示例1:

复制代码

#9.1
from pyecharts import Map
value =[155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr =["福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"]
map=Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add("", attr, value, maptype='china', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第16张图片

9.2 示例2:

复制代码

#9.2
from pyecharts import Map
value =[20, 190, 253, 77, 65]
attr =['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map=Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第17张图片

10,Parallel(平行坐标系)

复制代码

#示例十一:Parallel(平行坐标系)
from pyecharts import Parallel
c_schema =[ {"dim": 0, "name": "data"}, {"dim": 1, "name": "AQI"}, {"dim": 2, "name": "PM2.5"}, {"dim": 3, "name": "PM10"}, {"dim": 4, "name": "CO"}, {"dim": 5, "name": "NO2"}, {"dim": 6, "name": "CO2"}, {"dim": 7, "name": "等级", "type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}]
data =[ [1, 91, 45, 125, 0.82, 34, 23, "良"], [2, 65, 27, 78, 0.86, 45, 29, "良"], [3, 83, 60, 84, 1.09, 73, 27, "良"], [4, 109, 81, 121, 1.28, 68, 51, "轻度污染"], [5, 106, 77, 114, 1.07, 55, 51, "轻度污染"], [6, 109, 81, 121, 1.28, 68, 51, "轻度污染"], [7, 106, 77, 114, 1.07, 55, 51, "轻度污染"], [8, 89, 65, 78, 0.86, 51, 26, "良"], [9, 53, 33, 47, 0.64, 50, 17, "良"], [10, 80, 55, 80, 1.01, 75, 24, "良"], [11, 117, 81, 124, 1.03, 45, 24, "轻度污染"], [12, 99, 71, 142, 1.1, 62, 42, "良"], [13, 95, 69, 130, 1.28, 74, 50, "良"], [14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]]
parallel =Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第18张图片

11, Pie(饼图)

11.1 示例1:

复制代码

#11.1
from pyecharts import Pie
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[11, 12, 13, 10, 10, 10]
pie =Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第19张图片

11.2 示例2:

复制代码

#11.2
from pyecharts import Pie
attr =["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 =[11, 12, 13, 10, 10, 10]
v2 =[19, 21, 32, 20, 20, 33]
pie =Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area', is_legend_show=False, is_label_show=True)
pie.show_config() 
pie.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第20张图片

12,Polar(极坐标系)

12.1 示例1:

复制代码

#12.1
from pyecharts import Polar
radius =['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar =Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第21张图片

12.2 示例2:

按 Ctrl+C 复制代码

 

按 Ctrl+C 复制代码

效果:

 (转)Python3:pyecharts数据可视化插件_第22张图片

13,Radar(雷达图)

13.1 示例1:

复制代码

#13.1
from pyecharts import Radar
schema =[ ("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 =[[4300, 10000, 28000, 35000, 50000, 19000]]
v2 =[[5000, 14000, 28000, 31000, 42000, 21000]]
radar =Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.show_config()
radar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第23张图片

13.2 示例2:

复制代码

#13.2
from pyecharts import Radar
value_bj =[[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2], [56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4]]
value_sh =[[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2], [83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4]]
c_schema=[{"name": "AQI", "max": 300, "min": 5}, {"name": "PM2.5", "max": 250, "min": 20}, {"name": "PM10", "max": 300, "min": 5}, {"name": "CO", "max": 5}, {"name": "NO2", "max": 200}, {"name": "SO2", "max": 100}]
radar =Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第24张图片

14,Scatter(散点图)

14.1 示例1:

复制代码

#14.1
from pyecharts import Scatter
v1 =[10, 20, 30, 40, 50, 60]
v2 =[10, 20, 30, 40, 50, 60]
scatter =Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第25张图片

 14.2 示例2:散点打印Pyecharts字体(先准备一张png图片)

复制代码

from pyecharts import Scatter
scatter =Scatter("散点图示例")
v1, v2 =scatter.draw("pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第26张图片

15, WordCloud(词云图)

 15.1 示例1:

复制代码

#15.1
from pyecharts import WordCloud
name =['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value =[10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud =WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第27张图片

15.2 示例2:

复制代码

#15.2 
from pyecharts import WordCloud
name =['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications', 'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp', 'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham', 'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value =[10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555, 550, 462, 366, 360, 282, 273, 265]
wordcloud =WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud.show_config()
wordcloud.render() 

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第28张图片

五、用户自定义

用户还可以自定义结合 Line/Bar 图表

需使用 get_series() 和 custom() 方法

get_series():获取图表的 series 数据;

custom(series):追加自定义图表类型;

series -> dict:追加图表类型的 series 数据;

先用 get_series() 获取数据,再使用 custom() 将图表结合在一起;

示例代码:

复制代码

#示例:自定义图标类型
from pyecharts import Bar, Line
attr =['A', 'B', 'C', 'D', 'E', 'F']
v1 =[10, 20, 30, 40, 50, 60]
v2 =[15, 25, 35, 45, 55, 65]
v3 =[38, 28, 58, 48, 78, 68]
bar =Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line =Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第29张图片

六、示例

6.1,用极坐标系画出一个爱心,代码:

复制代码

#示例:用极坐标系画出一个爱心
import math 
from pyecharts import Polar
data =[]
for i in range(101):
    theta =i /100*360
    r =5*(1+math.sin(theta /180*math.pi)) 
    data.append([r, theta])
    hour =[i for i in range(1, 25)]
    polar =Polar("极坐标系示例", width=1200, height=600)
    polar.add("Love", data, angle_data=hour, boundary_gap=False,start_angle=0)
    polar.show_config()
    polar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第30张图片

6.2 用极坐标系画出一朵小花,代码:

复制代码

import math
from pyecharts import Polar
data =[]
for i in range(361): 
    t =i /180*math.pi 
    r =math.sin(2*t) *math.cos(2*t) 
    data.append([r, i])
    polar =Polar("极坐标系示例", width=1200, height=600)
    polar.add("Flower", data, start_angle=0, symbol=None, axis_range=[0, None])
    polar.show_config()
    polar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第31张图片

6.3 涂上颜色的小红花,代码:

复制代码

#示例:涂上颜色的小红花
import math 
from pyecharts import Polar
data =[]
for i in range(361):
    t =i /180*math.pi
    r =math.sin(2*t) *math.cos(2*t) 
    data.append([r, i])
    polar =Polar("极坐标系示例", width=1200, height=600)
    polar.add("Color-Flower", data, start_angle=0, symbol=None, axis_range=[0, None], area_color="#f71f24", area_opacity=0.6)
    polar.show_config()
    polar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第32张图片

6.4 用散点图画出一个爱心,代码:

from pyecharts import Scatter
scatter =Scatter("散点图示例", width=800, height=480)
v1 ,v2 =scatter.draw("love.png")
scatter.add("Love", v1, v2)
scatter.render()

效果:

(转)Python3:pyecharts数据可视化插件_第33张图片

6.5 用散点图画出一个火辣的 Bra,代码:

from pyecharts import Scatter
scatter =Scatter("散点图示例", width=1000, height=480)
v1 ,v2 =scatter.draw("cup.png")
scatter.add("Cup", v1, v2)
scatter.render()

效果:

6.6 某地最低温和最高气温折线图,代码:

复制代码

from pyecharts import Line
attr =['周一', '周二', '周三', '周四', '周五', '周六', '周日', ]
line =Line("折线图示例")
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"], mark_line=["average"], yaxis_formatter="°C")
line.show_config()
line.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第34张图片

6.7 饼图嵌套,代码:

复制代码

from pyecharts import Pie
pie =Pie("饼图示例", title_pos='center', width=1000, height=600)
pie.add("", ['A', 'B', 'C', 'D', 'E', 'F'], [335, 321, 234, 135, 251, 148], radius=[40, 55],is_label_show=True)
pie.add("", ['H', 'I', 'J'], [335, 679, 204], radius=[0, 30], legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第35张图片

6.8 饼图再嵌套,代码:

复制代码

import random 
from pyecharts import Pie
attr =['A', 'B', 'C', 'D', 'E', 'F']
pie =Pie("饼图示例", width=1000, height=600)
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[25, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[25, 50],rosetype='area')
pie.add("", attr, [random.randint(0, 100) for _ in range(6)], radius=[50, 55], center=[65, 50],is_random=True)
pie.add("", attr, [random.randint(20, 100) for _ in range(6)], radius=[0, 45], center=[65, 50],rosetype='radius')
pie.show_config()
pie.render()

复制代码

效果:

 (转)Python3:pyecharts数据可视化插件_第36张图片

6.9 某地的降水量和蒸发量柱状图,代码:

复制代码

from pyecharts import Bar
attr =["{}月".format(i) for i in range(1, 13)]
v1 =[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
v2 =[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
bar =Bar("柱状图示例")
bar.add("蒸发量", attr, v1, mark_line=["average"], mark_point=["max", "min"])
bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"])
bar.show_config()
bar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第37张图片

6.10 各类电影中"好片"所占的比例,代码:

复制代码

from pyecharts import Pie
pie =Pie('各类电影中"好片"所占的比例', "数据来着豆瓣", title_pos='center')
pie.add("", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, )
pie.add("", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, legend_pos='left')
pie.add("", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None)
pie.add("", ["犯罪", ""], [28, 72], center=[90, 70], radius=[18, 24], label_pos='center', is_label_show=True, label_text_color=None, is_legend_show=True, legend_top="center")
pie.show_config()
pie.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第38张图片

6.11 用极坐标系画出一个蜗牛壳,代码:

复制代码

import math
from pyecharts import Polar
data =[]
for i in range(5):
    for j in range(101):
        theta =j /100*360
        alpha =i *360+theta 
        r =math.pow(math.e, 0.003*alpha) 
        data.append([r, theta])
polar =Polar("极坐标系示例")
polar.add("", data, symbol_size=0, symbol='circle', start_angle=-25, is_radiusaxis_show=False, area_color="#f3c5b3", area_opacity=0.5, is_angleaxis_show=False)
polar.show_config()
polar.render()

复制代码

效果:

(转)Python3:pyecharts数据可视化插件_第39张图片

转自https://www.cnblogs.com/lizm166/p/9449261.html 

你可能感兴趣的:(python3)