利用kNN算法对iris数据集进行分类,本人也做了修改使得代码可实现

from numpy import *
import operator
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm

#载入数据
def file2matrix(fileName):
    file = open(fileName)
    allLines = file.readlines()
    row = len(allLines)
    dataSet = zeros((row, 4))
    labels = []
    index = 0
    for line in allLines:
        line = line.strip()
        listFromLine = line.split(',')
        dataSet[index, :] = listFromLine[0:4]
        labels.append(listFromLine[-1]) #取最后一维为标签
        index += 1
    return dataSet, labels #数据集和标签分开
    
def kNN(x, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    distance1 = tile(x, (dataSetSize,1)) - dataSet #欧氏距离计算开始
    distance2 = distance1 ** 2 #每个元素平方
    distance3 = distance2.sum(axis=1) #矩阵每行相加
    distance4 = distance3 ** 0.5 #欧氏距离计算结束
    sortedIndex = distance4.argsort() #返回从小到大排序的索引
    classCount = {}
    for i in range (k): #统计前k个数据类的数量
        label = labels[sortedIndex[i]]
        classCount[label] = classCount.get(label,0) + 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)#从大到小按类别数目排序
    print(sortedClassCount)
    return sortedClassCount[0][0]
    
def kNN_test():
    testRatio = 0.1 #取数据集的前0.1为测试数据
    dataSet, labels = file2matrix('irisdata_test.txt')
    row = dataSet.shape[0]    #数据集的行数,即数据集的总的样本数
    testNum = int(row * testRatio)
    error = 0.0 #判断错误的个数
    for i in range (testNum):
        result = kNN(dataSet[i, :], dataSet[testNum:row, :], labels[testNum:row], 3)
        print('返回的结果是: %s, 真实结果是: %s' % (result, labels[i]))
        if result != labels[i]:
            error += 1.0
    print('错误率为: %f' % (error/float(testNum)))
  
#画出散点图
def scatter():
    dataSet, labels = file2matrix('irisdata.txt')
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    type1 = ax.scatter(dataSet[0:50, 0], dataSet[0:50, 1], dataSet[0:50, 2], c='r', marker='^')
    type2 = ax.scatter(dataSet[50:100, 0], dataSet[50:100, 1], dataSet[50:100, 2], c='b', marker='o')
    type3 = ax.scatter(dataSet[100:150, 0], dataSet[100:150, 1], dataSet[100:150, 2], c='y', marker='x')
    ax.legend((type1, type2, type3), ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'))
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
    plt.show()

kNN_test()
scatter()

利用kNN算法对iris数据集进行分类,以前10%的数据作为测试数据,后90%的数据作为样本数据集 。由于iris数据集原本按照三种花的顺序排列,在测试时前10%全为第一种花,不能完整测试kNN的分类功能 。故将后两种花随机挑选数据各5项放入前10%,需要文件irisdata_test.txt后面的散点图将iris数据集的前三维数据画出,需要文件irisdata.txt

你可能感兴趣的:(机器学习,人工智能)