JS的浮点计算

        最近在做电商项目的时候,遇到了价格计算的时候,会出现类似欲199.9999999999999999999的情况,但是我明明计算的两个值是只有两位数,怎么会出现这种情况呢?

后来经过查找资料才知道:

比如0.1 + 0.2 = 0.30000000000000004; 这个样子是不是很奇葩;

其实对于浮点数的四则运算,几乎所有的编程语言都会有类似精度误差的问题,只不过在 C++/C#/Java 这些语言中已经封装好了方法来避免精度的问题,而 JavaScript 是一门弱类型的语言,从设计思想上就没有对浮点数有个严格的数据类型,所以精度误差的问题就显得格外突出。下面就分析下为什么会有这个精度误差,以及怎样修复这个误差。

首先,我们站在计算机的角度去思考问题,0.1 + 0.2 这个看似简单的问题,众所周知,能被计算机读懂的是二进制,而不是我们经常看见的十进制,所以我们先把0.1 + 0.2转换为十进制,

0.1 => 0.0001 1001 1001 1001…(无限循环)

0.2 => 0.0011 0011 0011 0011…(无限循环)

双精度浮点数的小数部分最多支持 52 位,所以两者相加之后得到这么一串 0.0100110011001100110011001100110011001100110011001100 因浮点数小数位的限制而截断的二进制数字,这时候,我们再把它转换为十进制,就成了 0.30000000000000004。

所以计算机在计算的时候,会先把数值转换为二进制,然后在进行相加,得到的二进制结果,在转化为十进制,这个时候结果就会变成后面多了很多位数的数字;

这个时候就会得到解决方案:将每个浮点数乘以10的N次方,计算完成后再除以10的N次方;

我们可以封装一个方法来进行转化;

 formatFloat(f,digit){
    let m = Math.pow(10, digit);
    let num = Math.round(f * m) / m;
    return num;
  }

f是计算表达式,digit是需要乘以10的多少次方

比如:

      formatFloat(0.1+0.2,2);

return返回的结果是0.3

 

你可能感兴趣的:(js)