利用{antialias: true}
能有效缓解
this.renderer = new this.THREE.WebGLRenderer({antialias: true})
引用路径不当会导致一些奇怪的错误,在threejs中所有的加载的引用都要用绝对路径,资源放在静态文件夹下。
缩放scale
注意不能是0。
如下的函数相当于Math.floor()
,但是该函数在~~(0.5)
返回的就是0,需要注意。
rand:function(min,max){
return ~~(Math.random()*(max-min+1)+min)
}
通常我们使用的是Hex
的颜色,但是我想要很多个粉红的爱心,但是爱心的颜色又要有不同,这样我们最好是用HSL
,我们这里只需要改变一些l
的值就可以得到很多类似的颜色。
// svg是利用爱心svg图像拉伸而成的Three.Mesh对象
// this.heartNum是指爱心的数量
for (let i = 0; i < this.heartNum; i++) {
let heart = svg.clone()
let svgMaterial = new this.THREE.MeshPhongMaterial({
shininess:60
});
heart.material = svgMaterial
let color = new this.THREE.Color(0xFFBBFF) // 粉色
let hsl= {}
color.getHSL(hsl)
heart.material.color.setHSL(hsl.h,hsl.s,this.rand(0.6,1)*hsl.l)
this.scene.add(heart)
}
说明:threejs
中的网格物体对材质的是引用传递,不是值传递,如果material
被 mesh1
和mesh2
用到了,改变 mesh1.material.color
,则mesh2
的材质颜色也改了,所以这里我们给每一个mesh
一个material
transformSVGPathExposed
将svg图像转化成three.shape
对象
ThreeBSP
图像的一些处理
其中用到了coffee语法,将其转化成js可以参考,http://coffee-script.org/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
var THREE = require('three')
var transformSVGPathExposed;
var applySVGTransformExposed;
function d3threeD(exports) {
const DEGS_TO_RADS = Math.PI / 180,
UNIT_SIZE = 1;
const DIGIT_0 = 48,
DIGIT_9 = 57,
COMMA = 44,
SPACE = 32,
PERIOD = 46,
MINUS = 45;
function transformSVGPath(pathStr) {
var paths = [];
var path = new THREE.Shape();
var idx = 1,
len = pathStr.length,
activeCmd,
x = 0,
y = 0,
nx = 0,
ny = 0,
firstX = null,
firstY = null,
x1 = 0,
x2 = 0,
y1 = 0,
y2 = 0,
rx = 0,
ry = 0,
xar = 0,
laf = 0,
sf = 0,
cx, cy;
function eatNum() {
var sidx, c, isFloat = false,
s;
// eat delims
while (idx < len) {
c = pathStr.charCodeAt(idx);
if (c !== COMMA && c !== SPACE)
break;
idx++;
}
if (c === MINUS)
sidx = idx++;
else
sidx = idx;
// eat number
while (idx < len) {
c = pathStr.charCodeAt(idx);
if (DIGIT_0 <= c && c <= DIGIT_9) {
idx++;
continue;
} else if (c === PERIOD) {
idx++;
isFloat = true;
continue;
}
s = pathStr.substring(sidx, idx);
return isFloat ? parseFloat(s) : parseInt(s);
}
s = pathStr.substring(sidx);
return isFloat ? parseFloat(s) : parseInt(s);
}
function nextIsNum() {
var c;
// do permanently eat any delims...
while (idx < len) {
c = pathStr.charCodeAt(idx);
if (c !== COMMA && c !== SPACE)
break;
idx++;
}
c = pathStr.charCodeAt(idx);
return (c === MINUS || (DIGIT_0 <= c && c <= DIGIT_9));
}
var canRepeat;
var enteredSub = false;
var zSeen = false;
activeCmd = pathStr[0];
while (idx <= len) {
canRepeat = true;
switch (activeCmd) {
// moveto commands, become lineto's if repeated
case 'M':
enteredSub = false;
x = eatNum();
y = eatNum();
path.moveTo(x, y);
activeCmd = 'L';
break;
case 'm':
x += eatNum();
y += eatNum();
path.moveTo(x, y);
activeCmd = 'l';
break;
case 'Z':
case 'z':
// z is a special case. This ends a segment and starts
// a new path. Since the three.js path is continuous
// we should start a new path here. This also draws a
// line from the current location to the start location.
canRepeat = false;
if (x !== firstX || y !== firstY)
path.lineTo(firstX, firstY);
paths.push(path);
// reset the elements
firstX = null;
firstY = null;
// avoid x,y being set incorrectly
enteredSub = true;
path = new THREE.Shape();
zSeen = true;
break;
// - lines!
case 'L':
case 'H':
case 'V':
nx = (activeCmd === 'V') ? x : eatNum();
ny = (activeCmd === 'H') ? y : eatNum();
path.lineTo(nx, ny);
x = nx;
y = ny;
break;
case 'l':
case 'h':
case 'v':
nx = (activeCmd === 'v') ? x : (x + eatNum());
ny = (activeCmd === 'h') ? y : (y + eatNum());
path.lineTo(nx, ny);
x = nx;
y = ny;
break;
// - cubic bezier
case 'C':
x1 = eatNum();
y1 = eatNum();
case 'S':
if (activeCmd === 'S') {
x1 = 2 * x - x2;
y1 = 2 * y - y2;
}
x2 = eatNum();
y2 = eatNum();
nx = eatNum();
ny = eatNum();
path.bezierCurveTo(x1, y1, x2, y2, nx, ny);
x = nx;
y = ny;
break;
case 'c':
x1 = x + eatNum();
y1 = y + eatNum();
case 's':
if (activeCmd === 's') {
x1 = 2 * x - x2;
y1 = 2 * y - y2;
}
x2 = x + eatNum();
y2 = y + eatNum();
nx = x + eatNum();
ny = y + eatNum();
path.bezierCurveTo(x1, y1, x2, y2, nx, ny);
x = nx;
y = ny;
break;
// - quadratic bezier
case 'Q':
x1 = eatNum();
y1 = eatNum();
case 'T':
if (activeCmd === 'T') {
x1 = 2 * x - x1;
y1 = 2 * y - y1;
}
nx = eatNum();
ny = eatNum();
path.quadraticCurveTo(x1, y1, nx, ny);
x = nx;
y = ny;
break;
case 'q':
x1 = x + eatNum();
y1 = y + eatNum();
case 't':
if (activeCmd === 't') {
x1 = 2 * x - x1;
y1 = 2 * y - y1;
}
nx = x + eatNum();
ny = y + eatNum();
path.quadraticCurveTo(x1, y1, nx, ny);
x = nx;
y = ny;
break;
// - elliptical arc
case 'A':
rx = eatNum();
ry = eatNum();
xar = eatNum() * DEGS_TO_RADS;
laf = eatNum();
sf = eatNum();
nx = eatNum();
ny = eatNum();
if (rx !== ry) {
console.warn("Forcing elliptical arc to be a circular one :(",
rx, ry);
}
// SVG implementation notes does all the math for us! woo!
// http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
// step1, using x1 as x1'
x1 = Math.cos(xar) * (x - nx) / 2 + Math.sin(xar) * (y - ny) / 2;
y1 = -Math.sin(xar) * (x - nx) / 2 + Math.cos(xar) * (y - ny) / 2;
// step 2, using x2 as cx'
var norm = Math.sqrt(
(rx * rx * ry * ry - rx * rx * y1 * y1 - ry * ry * x1 * x1) /
(rx * rx * y1 * y1 + ry * ry * x1 * x1));
if (laf === sf)
norm = -norm;
x2 = norm * rx * y1 / ry;
y2 = norm * -ry * x1 / rx;
// step 3
cx = Math.cos(xar) * x2 - Math.sin(xar) * y2 + (x + nx) / 2;
cy = Math.sin(xar) * x2 + Math.cos(xar) * y2 + (y + ny) / 2;
var u = new THREE.Vector2(1, 0),
v = new THREE.Vector2((x1 - x2) / rx,
(y1 - y2) / ry);
var startAng = Math.acos(u.dot(v) / u.length() / v.length());
if (u.x * v.y - u.y * v.x < 0)
startAng = -startAng;
// we can reuse 'v' from start angle as our 'u' for delta angle
u.x = (-x1 - x2) / rx;
u.y = (-y1 - y2) / ry;
var deltaAng = Math.acos(v.dot(u) / v.length() / u.length());
// This normalization ends up making our curves fail to triangulate...
if (v.x * u.y - v.y * u.x < 0)
deltaAng = -deltaAng;
if (!sf && deltaAng > 0)
deltaAng -= Math.PI * 2;
if (sf && deltaAng < 0)
deltaAng += Math.PI * 2;
path.absarc(cx, cy, rx, startAng, startAng + deltaAng, sf);
x = nx;
y = ny;
break;
case ' ':
// if it's an empty space, just skip it, and see if we can find a real command
break;
default:
break;
}
if (firstX === null && !enteredSub) {
firstX = x;
firstY = y;
}
// just reissue the command
if (canRepeat && nextIsNum())
continue;
activeCmd = pathStr[idx++];
}
if (zSeen) {
return paths;
} else {
paths.push(path);
return paths;
}
}
transformSVGPathExposed = transformSVGPath;
function applySVGTransform(obj, tstr) {
var idx = tstr.indexOf('('),
len = tstr.length,
cmd = tstr.substring(0, idx++);
function eatNum() {
var sidx, c, isFloat = false,
s;
// eat delims
while (idx < len) {
c = tstr.charCodeAt(idx);
if (c !== COMMA && c !== SPACE)
break;
idx++;
}
if (c === MINUS)
sidx = idx++;
else
sidx = idx;
// eat number
while (idx < len) {
c = tstr.charCodeAt(idx);
if (DIGIT_0 <= c && c <= DIGIT_9) {
idx++;
continue;
} else if (c === PERIOD) {
idx++;
isFloat = true;
continue;
}
s = tstr.substring(sidx, idx);
return isFloat ? parseFloat(s) : parseInt(s);
}
s = tstr.substring(sidx);
return isFloat ? parseFloat(s) : parseInt(s);
}
switch (cmd) {
case 'translate':
obj.position.x = Math.floor(eatNum() * UNIT_SIZE);
obj.position.y = Math.floor(eatNum() * UNIT_SIZE);
break;
case 'scale':
obj.scale.x = Math.floor(eatNum() * UNIT_SIZE);
obj.scale.y = Math.floor(eatNum() * UNIT_SIZE);
break;
default:
console.warn("don't understand transform", tstr);
break;
}
}
applySVGTransformExposed = applySVGTransform;
function wrap_setAttribute(name, value) {}
function wrap_setAttributeNS(namespace, name, value) {}
var extrudeDefaults = {
amount: 20,
bevelEnabled: true,
material: 0,
extrudeMaterial: 0,
};
function commonSetAttribute(name, value) {
switch (name) {
case 'x':
this.position.x = Math.floor(value * UNIT_SIZE);
break;
case 'y':
this.position.y = Math.floor(value * UNIT_SIZE);
break;
case 'class':
this.clazz = value;
break;
case 'stroke':
case 'fill':
if (typeof(value) !== 'string')
value = value.toString();
this.material.color.setHex(parseInt(value.substring(1), 16));
break;
case 'transform':
applySVGTransform(this, value);
break;
case 'd':
var shape = transformSVGPath(value),
geom = shape.extrude(extrudeDefaults);
this.geometry = geom;
this.geometry.boundingSphere = {
radius: 3 * UNIT_SIZE
};
this.scale.set(UNIT_SIZE, UNIT_SIZE, UNIT_SIZE);
break;
default:
throw new Error("no setter for: " + name);
}
}
function commonSetAttributeNS(namespace, name, value) {
this.setAttribute(name, value);
}
function Group(parentThing) {
THREE.Object3D.call(this);
this.d3class = '';
parentThing.add(this);
};
Group.prototype = new THREE.Object3D();
Group.prototype.constructor = Group;
Group.prototype.d3tag = 'g';
Group.prototype.setAttribute = commonSetAttribute;
Group.prototype.setAttributeNS = commonSetAttributeNS;
function fabGroup() {
return new Group(this);
}
function Mesh(parentThing, tag, geometry, material) {
THREE.Mesh.call(this, geometry, material);
this.d3tag = tag;
this.d3class = '';
parentThing.add(this);
}
Mesh.prototype = new THREE.Mesh();
Mesh.prototype.constructor = Mesh;
Mesh.prototype.setAttribute = commonSetAttribute;
Mesh.prototype.setAttributeNS = commonSetAttributeNS;
const SPHERE_SEGS = 16,
SPHERE_RINGS = 16,
DEFAULT_COLOR = 0xcc0000;
var sharedSphereGeom = null,
sharedCubeGeom = null;
function fabSphere() {
if (!sharedSphereGeom)
sharedSphereGeom = new THREE.SphereGeometry(
UNIT_SIZE / 2, SPHERE_SEGS, SPHERE_RINGS);
var material = new THREE.MeshLambertMaterial({
color: DEFAULT_COLOR,
});
return new Mesh(this, 'sphere', sharedSphereGeom, material);
}
function fabCube() {
if (!sharedCubeGeom)
sharedCubeGeom = new THREE.CubeGeometry(UNIT_SIZE, UNIT_SIZE, UNIT_SIZE);
var material = new THREE.MeshLambertMaterial({
color: DEFAULT_COLOR,
});
return new Mesh(this, 'cube', sharedCubeGeom, material);
}
function fabPath() {
// start with a cube that we will replace with the path once it gets created
if (!sharedCubeGeom)
sharedCubeGeom = new THREE.CubeGeometry(UNIT_SIZE, UNIT_SIZE, UNIT_SIZE);
var material = new THREE.MeshLambertMaterial({
color: DEFAULT_COLOR,
});
return new Mesh(this, 'path', sharedCubeGeom, material);
}
function Scene() {
THREE.Scene.call(this);
this.renderer = null;
this.camera = null;
this.controls = null;
this._d3_width = null;
this._d3_height = null;
}
Scene.prototype = new THREE.Scene();
Scene.prototype.constructor = Scene;
Scene.prototype._setBounds = function() {
this.renderer.setSize(this._d3_width, this._d3_height);
var aspect = this.camera.aspect;
this.camera.position.set(
this._d3_width * UNIT_SIZE / 2,
this._d3_height * UNIT_SIZE / 2,
Math.max(this._d3_width * UNIT_SIZE / Math.sqrt(2),
this._d3_height * UNIT_SIZE / Math.sqrt(2)));
this.controls.target.set(this.camera.position.x, this.camera.position.y, 0);
console.log("camera:", this.camera.position.x, this.camera.position.y,
this.camera.position.z);
//this.camera.position.z = 1000;
};
Scene.prototype.setAttribute = function(name, value) {
switch (name) {
case 'width':
this._d3_width = value;
if (this._d3_height)
this._setBounds();
break;
case 'height':
this._d3_height = value;
if (this._d3_width)
this._setBounds();
break;
}
};
function fabVis() {
var camera, scene, controls, renderer;
// - scene
scene = new Scene();
threeJsScene = scene;
// - camera
camera = scene.camera = new THREE.PerspectiveCamera(
75,
window.innerWidth / window.innerHeight,
1, 100000);
/*
camera = scene.camera = new THREE.OrthographicCamera(
window.innerWidth / -2, window.innerWidth / 2,
window.innerHeight / 2, window.innerHeight / -2,
1, 50000);
*/
scene.add(camera);
// - controls
// from misc_camera_trackball.html example
controls = scene.controls = new THREE.TrackballControls(camera);
controls.rotateSpeed = 1.0;
controls.zoomSpeed = 1.2;
controls.panSpeed = 0.8;
controls.noZoom = false;
controls.noPan = false;
controls.staticMoving = true;
controls.dynamicDampingFactor = 0.3;
controls.keys = [65, 83, 68];
controls.addEventListener('change', render);
// - light
/*
var pointLight = new THREE.PointLight(0xFFFFFF);
pointLight.position.set(10, 50, 130);
scene.add(pointLight);
*/
var spotlight = new THREE.SpotLight(0xffffff);
spotlight.position.set(-50000, 50000, 100000);
scene.add(spotlight);
var backlight = new THREE.SpotLight(0x888888);
backlight.position.set(50000, -50000, -100000);
scene.add(backlight);
/*
var ambientLight = new THREE.AmbientLight(0x888888);
scene.add(ambientLight);
*/
function helperPlanes(maxBound) {
var geom = new THREE.PlaneGeometry(maxBound, maxBound, 4, 4);
for (var i = 0; i < 4; i++) {
var color, cx, cy;
switch (i) {
case 0:
color = 0xff0000;
cx = maxBound / 2;
cy = maxBound / 2;
break;
case 1:
color = 0x00ff00;
cx = maxBound / 2;
cy = -maxBound / 2;
break;
case 2:
color = 0x0000ff;
cx = -maxBound / 2;
cy = -maxBound / 2;
break;
case 3:
color = 0xffff00;
cx = -maxBound / 2;
cy = maxBound / 2;
break;
}
var material = new THREE.MeshLambertMaterial({
color: color
});
var mesh = new THREE.Mesh(geom, material);
mesh.position.set(cx, cy, -1);
scene.add(mesh);
}
}
//helperPlanes(UNIT_SIZE * 225);
// - renderer
renderer = scene.renderer = new THREE.WebGLRenderer({
// too slow...
//antialias: true,
});
this.appendChild(renderer.domElement);
// - stats
var stats = new Stats();
stats.domElement.style.position = 'absolute';
stats.domElement.style.top = '0px';
stats.domElement.style.zIndex = 100;
this.appendChild(stats.domElement);
function animate() {
requestAnimationFrame(animate, renderer.domElement);
controls.update();
}
function render() {
renderer.render(scene, camera);
stats.update();
}
animate();
return scene;
};
}
var $d3g = {};
d3threeD($d3g);
export {
transformSVGPathExposed
}
var BACK, COPLANAR, EPSILON, FRONT, SPANNING, Timelimit, returning,
__bind = function(fn, me) {
return function() {
return fn.apply(me, arguments);
};
},
__slice = [].slice,
__hasProp = {}.hasOwnProperty,
__extends = function(child, parent) {
for (var key in parent) {
if (__hasProp.call(parent, key)) child[key] = parent[key];
}
function ctor() {
this.constructor = child;
}
ctor.prototype = parent.prototype;
child.prototype = new ctor();
child.__super__ = parent.prototype;
return child;
};
EPSILON = 1e-5;
COPLANAR = 0;
FRONT = 1;
BACK = 2;
SPANNING = 3;
var THREE = require('three')
var ThreeBSP;
returning = function(value, fn) {
fn();
return value;
};
Timelimit = (function() {
function Timelimit(timeout, progress) {
this.timeout = timeout;
this.progress = progress;
this.doTask = __bind(this.doTask, this);
this.finish = __bind(this.finish, this);
this.start = __bind(this.start, this);
this.check = __bind(this.check, this);
"NOTHING";
}
Timelimit.prototype.check = function() {
var elapsed;
if (this.started == null) {
return;
}
return returning((elapsed = Date.now() - this.started), (function(_this) {
return function() {
var _ref, _ref1, _ref2;
if ((_ref = elapsed >= _this.timeout) != null ? _ref : Infinity) {
throw new Error("Timeout reached: " + elapsed + "/" + _this.timeout + ", " + ((_ref1 = _this.tasks) != null ? _ref1 : 0) + " tasks unfinished " + ((_ref2 = _this.done) != null ? _ref2 : 0) + " finished.");
}
};
})(this));
};
Timelimit.prototype.start = function() {
if (this.started == null) {
this.started = Date.now();
}
if (this.tasks == null) {
this.tasks = 0;
}
if (this.total == null) {
this.total = 0;
}
this.total += 1;
this.tasks += 1;
return this.check();
};
Timelimit.prototype.finish = function() {
var elapsed;
if ((this.tasks != null) && this.tasks < 1) {
throw new Error("Finished more tasks than started");
}
this.tasks -= 1;
elapsed = this.check();
if (this.done == null) {
this.done = 0;
}
this.done += 1;
if (this.progress != null) {
this.progress(this.done, this.total);
}
if (this.tasks === 0) {
"Finished " + this.done + " tasks in " + elapsed + "/" + this.timeout + " ms";
return this.started = this.done = this.total = void 0;
}
};
Timelimit.prototype.doTask = function(block) {
var result;
this.start();
result = block();
this.finish();
return result;
};
return Timelimit;
})();
ThreeBSP = (function() {
function ThreeBSP(treeIsh, matrix, options) {
var _base, _ref, _ref1, _ref2, _ref3;
this.matrix = matrix;
this.options = options != null ? options : {};
this.intersect = __bind(this.intersect, this);
this.union = __bind(this.union, this);
this.subtract = __bind(this.subtract, this);
this.toGeometry = __bind(this.toGeometry, this);
this.toMesh = __bind(this.toMesh, this);
this.toTree = __bind(this.toTree, this);
this.withTimer = __bind(this.withTimer, this);
if ((this.matrix != null) && !(this.matrix instanceof THREE.Matrix4)) {
this.options = this.matrix;
this.matrix = void 0;
}
if (this.options == null) {
this.options = {};
}
if (this.matrix == null) {
this.matrix = new THREE.Matrix4();
}
if ((_base = this.options).timer == null) {
_base.timer = new Timelimit((_ref = (_ref1 = this.options.timer) != null ? _ref1.timeout : void 0) != null ? _ref : this.options.timeout, (_ref2 = (_ref3 = this.options.timer) != null ? _ref3.progress : void 0) != null ? _ref2 : this.options.progress);
}
this.tree = this.toTree(treeIsh);
}
ThreeBSP.prototype.withTimer = function(new_timer, block) {
var old_timer;
old_timer = this.options.timer;
try {
this.options.timer = new_timer;
return block();
} finally {
this.options.timer = old_timer;
}
};
ThreeBSP.prototype.toTree = function(treeIsh) {
var face, geometry, i, polygons, _fn, _i, _len, _ref;
if (treeIsh instanceof ThreeBSP.Node) {
return treeIsh;
}
polygons = [];
geometry = treeIsh instanceof THREE.Geometry ? treeIsh : treeIsh instanceof THREE.Mesh ? (treeIsh.updateMatrix(), this.matrix = treeIsh.matrix.clone(), treeIsh.geometry) : void 0;
_ref = geometry.faces;
_fn = (function(_this) {
return function(face, i) {
var faceVertexUvs, idx, polygon, vIndex, vName, vertex, _j, _len1, _ref1, _ref2;
faceVertexUvs = (_ref1 = geometry.faceVertexUvs) != null ? _ref1[0][i] : void 0;
if (faceVertexUvs == null) {
faceVertexUvs = [new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2(), new THREE.Vector2()];
}
polygon = new ThreeBSP.Polygon();
_ref2 = ['a', 'b', 'c', 'd'];
for (vIndex = _j = 0, _len1 = _ref2.length; _j < _len1; vIndex = ++_j) {
vName = _ref2[vIndex];
if ((idx = face[vName]) != null) {
vertex = geometry.vertices[idx];
vertex = new ThreeBSP.Vertex(vertex.x, vertex.y, vertex.z, face.vertexNormals[0], new THREE.Vector2(faceVertexUvs[vIndex].x, faceVertexUvs[vIndex].y));
vertex.applyMatrix4(_this.matrix);
polygon.vertices.push(vertex);
}
}
return polygons.push(polygon.calculateProperties());
};
})(this);
for (i = _i = 0, _len = _ref.length; _i < _len; i = ++_i) {
face = _ref[i];
_fn(face, i);
}
return new ThreeBSP.Node(polygons, this.options);
};
ThreeBSP.prototype.toMesh = function(material) {
var geometry, mesh,
_this = this;
if (material == null) {
material = new THREE.MeshNormalMaterial();
}
geometry = this.toGeometry();
return returning((mesh = new THREE.Mesh(geometry, material)), function() {
mesh.position.setFromMatrixPosition(_this.matrix);
return mesh.rotation.setFromRotationMatrix(_this.matrix);
});
};
ThreeBSP.prototype.toGeometry = function() {
return this.options.timer.doTask((function(_this) {
return function() {
var geometry, matrix;
matrix = new THREE.Matrix4().getInverse(_this.matrix);
return returning((geometry = new THREE.Geometry()), function() {
var polygon, _i, _len, _ref, _results;
_ref = _this.tree.allPolygons();
_results = [];
for (_i = 0, _len = _ref.length; _i < _len; _i++) {
polygon = _ref[_i];
_results.push(_this.options.timer.doTask(function() {
var face, idx, polyVerts, v, vertUvs, verts, _j, _ref1, _results1;
polyVerts = (function() {
var _j, _len1, _ref1, _results1;
_ref1 = polygon.vertices;
_results1 = [];
for (_j = 0, _len1 = _ref1.length; _j < _len1; _j++) {
v = _ref1[_j];
_results1.push(v.clone().applyMatrix4(matrix));
}
return _results1;
})();
_results1 = [];
for (idx = _j = 2, _ref1 = polyVerts.length; 2 <= _ref1 ? _j < _ref1 : _j > _ref1; idx = 2 <= _ref1 ? ++_j : --_j) {
verts = [polyVerts[0], polyVerts[idx - 1], polyVerts[idx]];
vertUvs = (function() {
var _k, _len1, _ref2, _ref3, _results2;
_results2 = [];
for (_k = 0, _len1 = verts.length; _k < _len1; _k++) {
v = verts[_k];
_results2.push(new THREE.Vector2((_ref2 = v.uv) != null ? _ref2.x : void 0, (_ref3 = v.uv) != null ? _ref3.y : void 0));
}
return _results2;
})();
face = (function(func, args, ctor) {
ctor.prototype = func.prototype;
var child = new ctor,
result = func.apply(child, args);
return Object(result) === result ? result : child;
})(THREE.Face3, __slice.call((function() {
var _k, _len1, _results2;
_results2 = [];
for (_k = 0, _len1 = verts.length; _k < _len1; _k++) {
v = verts[_k];
_results2.push(geometry.vertices.push(v) - 1);
}
return _results2;
})()).concat([polygon.normal.clone()]), function() {});
geometry.faces.push(face);
_results1.push(geometry.faceVertexUvs[0].push(vertUvs));
}
return _results1;
}));
}
return _results;
});
};
})(this));
};
ThreeBSP.prototype.subtract = function(other) {
return this.options.timer.doTask((function(_this) {
return function() {
return other.withTimer(_this.options.timer, function() {
var them, us, _ref;
_ref = [_this.tree.clone(), other.tree.clone()], us = _ref[0], them = _ref[1];
us.invert().clipTo(them);
them.clipTo(us).invert().clipTo(us).invert();
return new ThreeBSP(us.build(them.allPolygons()).invert(), _this.matrix, _this.options);
});
};
})(this));
};
ThreeBSP.prototype.union = function(other) {
return this.options.timer.doTask((function(_this) {
return function() {
return other.withTimer(_this.options.timer, function() {
var them, us, _ref;
_ref = [_this.tree.clone(), other.tree.clone()], us = _ref[0], them = _ref[1];
us.clipTo(them);
them.clipTo(us).invert().clipTo(us).invert();
return new ThreeBSP(us.build(them.allPolygons()), _this.matrix, _this.options);
});
};
})(this));
};
ThreeBSP.prototype.intersect = function(other) {
return this.options.timer.doTask((function(_this) {
return function() {
return other.withTimer(_this.options.timer, function() {
var them, us, _ref;
_ref = [_this.tree.clone(), other.tree.clone()], us = _ref[0], them = _ref[1];
them.clipTo(us.invert()).invert().clipTo(us.clipTo(them));
return new ThreeBSP(us.build(them.allPolygons()).invert(), _this.matrix, _this.options);
});
};
})(this));
};
return ThreeBSP;
})();
ThreeBSP.Vertex = (function(_super) {
__extends(Vertex, _super);
function Vertex(x, y, z, normal, uv) {
this.normal = normal != null ? normal : new THREE.Vector3();
this.uv = uv != null ? uv : new THREE.Vector2();
this.interpolate = __bind(this.interpolate, this);
this.lerp = __bind(this.lerp, this);
Vertex.__super__.constructor.call(this, x, y, z);
}
Vertex.prototype.clone = function() {
return new ThreeBSP.Vertex(this.x, this.y, this.z, this.normal.clone(), this.uv.clone());
};
Vertex.prototype.lerp = function(v, alpha) {
return returning(Vertex.__super__.lerp.apply(this, arguments), (function(_this) {
return function() {
_this.uv.add(v.uv.clone().sub(_this.uv).multiplyScalar(alpha));
return _this.normal.lerp(v, alpha);
};
})(this));
};
Vertex.prototype.interpolate = function() {
var args, _ref;
args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
return (_ref = this.clone()).lerp.apply(_ref, args);
};
return Vertex;
})(THREE.Vector3);
ThreeBSP.Polygon = (function() {
function Polygon(vertices, normal, w) {
this.vertices = vertices != null ? vertices : [];
this.normal = normal;
this.w = w;
this.subdivide = __bind(this.subdivide, this);
this.tessellate = __bind(this.tessellate, this);
this.classifySide = __bind(this.classifySide, this);
this.classifyVertex = __bind(this.classifyVertex, this);
this.invert = __bind(this.invert, this);
this.clone = __bind(this.clone, this);
this.calculateProperties = __bind(this.calculateProperties, this);
if (this.vertices.length) {
this.calculateProperties();
}
}
Polygon.prototype.calculateProperties = function() {
return returning(this, (function(_this) {
return function() {
var a, b, c, _ref;
_ref = _this.vertices, a = _ref[0], b = _ref[1], c = _ref[2];
_this.normal = b.clone().sub(a).cross(c.clone().sub(a)).normalize();
return _this.w = _this.normal.clone().dot(a);
};
})(this));
};
Polygon.prototype.clone = function() {
var v;
return new ThreeBSP.Polygon((function() {
var _i, _len, _ref, _results;
_ref = this.vertices;
_results = [];
for (_i = 0, _len = _ref.length; _i < _len; _i++) {
v = _ref[_i];
_results.push(v.clone());
}
return _results;
}).call(this), this.normal.clone(), this.w);
};
Polygon.prototype.invert = function() {
return returning(this, (function(_this) {
return function() {
_this.normal.multiplyScalar(-1);
_this.w *= -1;
return _this.vertices.reverse();
};
})(this));
};
Polygon.prototype.classifyVertex = function(vertex) {
var side;
side = this.normal.dot(vertex) - this.w;
switch (false) {
case !(side < -EPSILON):
return BACK;
case !(side > EPSILON):
return FRONT;
default:
return COPLANAR;
}
};
Polygon.prototype.classifySide = function(polygon) {
var back, front, tally, v, _i, _len, _ref, _ref1;
_ref = [0, 0], front = _ref[0], back = _ref[1];
tally = (function(_this) {
return function(v) {
switch (_this.classifyVertex(v)) {
case FRONT:
return front += 1;
case BACK:
return back += 1;
}
};
})(this);
_ref1 = polygon.vertices;
for (_i = 0, _len = _ref1.length; _i < _len; _i++) {
v = _ref1[_i];
tally(v);
}
if (front > 0 && back === 0) {
return FRONT;
}
if (front === 0 && back > 0) {
return BACK;
}
if ((front === back && back === 0)) {
return COPLANAR;
}
return SPANNING;
};
Polygon.prototype.tessellate = function(poly) {
var b, count, f, i, j, polys, t, ti, tj, v, vi, vj, _i, _len, _ref, _ref1, _ref2;
_ref = {
f: [],
b: [],
count: poly.vertices.length
}, f = _ref.f, b = _ref.b, count = _ref.count;
if (this.classifySide(poly) !== SPANNING) {
return [poly];
}
_ref1 = poly.vertices;
for (i = _i = 0, _len = _ref1.length; _i < _len; i = ++_i) {
vi = _ref1[i];
vj = poly.vertices[(j = (i + 1) % count)];
_ref2 = (function() {
var _j, _len1, _ref2, _results;
_ref2 = [vi, vj];
_results = [];
for (_j = 0, _len1 = _ref2.length; _j < _len1; _j++) {
v = _ref2[_j];
_results.push(this.classifyVertex(v));
}
return _results;
}).call(this), ti = _ref2[0], tj = _ref2[1];
if (ti !== BACK) {
f.push(vi);
}
if (ti !== FRONT) {
b.push(vi);
}
if ((ti | tj) === SPANNING) {
t = (this.w - this.normal.dot(vi)) / this.normal.dot(vj.clone().sub(vi));
v = vi.interpolate(vj, t);
f.push(v);
b.push(v);
}
}
return returning((polys = []), (function(_this) {
return function() {
if (f.length >= 3) {
polys.push(new ThreeBSP.Polygon(f));
}
if (b.length >= 3) {
return polys.push(new ThreeBSP.Polygon(b));
}
};
})(this));
};
Polygon.prototype.subdivide = function(polygon, coplanar_front, coplanar_back, front, back) {
var poly, side, _i, _len, _ref, _results;
_ref = this.tessellate(polygon);
_results = [];
for (_i = 0, _len = _ref.length; _i < _len; _i++) {
poly = _ref[_i];
side = this.classifySide(poly);
switch (side) {
case FRONT:
_results.push(front.push(poly));
break;
case BACK:
_results.push(back.push(poly));
break;
case COPLANAR:
if (this.normal.dot(poly.normal) > 0) {
_results.push(coplanar_front.push(poly));
} else {
_results.push(coplanar_back.push(poly));
}
break;
default:
throw new Error("BUG: Polygon of classification " + side + " in subdivision");
}
}
return _results;
};
return Polygon;
})();
ThreeBSP.Node = (function() {
Node.prototype.clone = function() {
var node;
return returning((node = new ThreeBSP.Node(this.options)), (function(_this) {
return function() {
var _ref;
node.divider = (_ref = _this.divider) != null ? _ref.clone() : void 0;
node.polygons = _this.options.timer.doTask(function() {
var p, _i, _len, _ref1, _results;
_ref1 = _this.polygons;
_results = [];
for (_i = 0, _len = _ref1.length; _i < _len; _i++) {
p = _ref1[_i];
_results.push(p.clone());
}
return _results;
});
node.front = _this.options.timer.doTask(function() {
var _ref1;
return (_ref1 = _this.front) != null ? _ref1.clone() : void 0;
});
return node.back = _this.options.timer.doTask(function() {
var _ref1;
return (_ref1 = _this.back) != null ? _ref1.clone() : void 0;
});
};
})(this));
};
function Node(polygons, options) {
this.options = options != null ? options : {};
this.clipTo = __bind(this.clipTo, this);
this.clipPolygons = __bind(this.clipPolygons, this);
this.invert = __bind(this.invert, this);
this.allPolygons = __bind(this.allPolygons, this);
this.isConvex = __bind(this.isConvex, this);
this.build = __bind(this.build, this);
this.clone = __bind(this.clone, this);
if ((polygons != null) && !(polygons instanceof Array)) {
this.options = polygons;
polygons = void 0;
}
this.polygons = [];
this.options.timer.doTask((function(_this) {
return function() {
if ((polygons != null) && polygons.length) {
return _this.build(polygons);
}
};
})(this));
}
Node.prototype.build = function(polygons) {
return returning(this, (function(_this) {
return function() {
var polys, side, sides, _results;
sides = {
front: [],
back: []
};
if (_this.divider == null) {
_this.divider = polygons[0].clone();
}
_this.options.timer.doTask(function() {
var poly, _i, _len, _results;
_results = [];
for (_i = 0, _len = polygons.length; _i < _len; _i++) {
poly = polygons[_i];
_results.push(_this.options.timer.doTask(function() {
return _this.divider.subdivide(poly, _this.polygons, _this.polygons, sides.front, sides.back);
}));
}
return _results;
});
_results = [];
for (side in sides) {
if (!__hasProp.call(sides, side)) continue;
polys = sides[side];
if (polys.length) {
if (_this[side] == null) {
_this[side] = new ThreeBSP.Node(_this.options);
}
_results.push(_this[side].build(polys));
} else {
_results.push(void 0);
}
}
return _results;
};
})(this));
};
Node.prototype.isConvex = function(polys) {
var inner, outer, _i, _j, _len, _len1;
for (_i = 0, _len = polys.length; _i < _len; _i++) {
inner = polys[_i];
for (_j = 0, _len1 = polys.length; _j < _len1; _j++) {
outer = polys[_j];
if (inner !== outer && outer.classifySide(inner) !== BACK) {
return false;
}
}
}
return true;
};
Node.prototype.allPolygons = function() {
return this.options.timer.doTask((function(_this) {
return function() {
var _ref, _ref1;
return _this.polygons.slice().concat(((_ref1 = _this.front) != null ? _ref1.allPolygons() : void 0) || []).concat(((_ref = _this.back) != null ? _ref.allPolygons() : void 0) || []);
};
})(this));
};
Node.prototype.invert = function() {
return returning(this, (function(_this) {
return function() {
return _this.options.timer.doTask(function() {
var flipper, poly, _i, _j, _len, _len1, _ref, _ref1, _ref2;
_ref = _this.polygons;
for (_i = 0, _len = _ref.length; _i < _len; _i++) {
poly = _ref[_i];
_this.options.timer.doTask(function() {
return poly.invert();
});
}
_ref1 = [_this.divider, _this.front, _this.back];
for (_j = 0, _len1 = _ref1.length; _j < _len1; _j++) {
flipper = _ref1[_j];
_this.options.timer.doTask(function() {
return flipper != null ? flipper.invert() : void 0;
});
}
return _ref2 = [_this.back, _this.front], _this.front = _ref2[0], _this.back = _ref2[1], _ref2;
});
};
})(this));
};
Node.prototype.clipPolygons = function(polygons) {
return this.options.timer.doTask((function(_this) {
return function() {
var back, front, poly, _i, _len;
if (!_this.divider) {
return polygons.slice();
}
front = [];
back = [];
for (_i = 0, _len = polygons.length; _i < _len; _i++) {
poly = polygons[_i];
_this.options.timer.doTask(function() {
return _this.divider.subdivide(poly, front, back, front, back);
});
}
if (_this.front) {
front = _this.front.clipPolygons(front);
}
if (_this.back) {
back = _this.back.clipPolygons(back);
}
if (_this.back) {
return front.concat(back);
} else {
return front;
}
};
})(this));
};
Node.prototype.clipTo = function(node) {
return returning(this, (function(_this) {
return function() {
return _this.options.timer.doTask(function() {
var _ref, _ref1;
_this.polygons = node.clipPolygons(_this.polygons);
if ((_ref = _this.front) != null) {
_ref.clipTo(node);
}
return (_ref1 = _this.back) != null ? _ref1.clipTo(node) : void 0;
});
};
})(this));
};
return Node;
})();
export {
ThreeBSP
}