主要任务:确定与传输媒体的接口的一些特性。
正交振幅调制 QAM (Quadrature Amplitude Modulation)
为了达到更高的信息传输速率,必须采用技术上更为复杂的多元制的振幅相位混合调制方法。
例如:
可供选择的相位有 12 种,而对于每一种相位有 1 或 2 种振幅可供选择。总共有 16 种组合,即 16 个码元。
由于 4 bit 编码共有 16 种不同的组合,因此这 16 个点中的每个点可对应于一种 4 bit 的编码。数据传输率可提高 4 倍。
**不是码元越多越好。若每一个码元可表示的比特数越多,则在接收端进行解调时要正确识别每一种状态就越困难,出错率增加。 **
从概念上讲,限制码元在信道上的传输速率的因素有以下两个:
具体的信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道。
1924 年,奈奎斯特 (Nyquist) 就推导出了著名的奈氏准则。他给出了在假定的理想条件下,为了避免码间串扰,码元的传输速率的上限值。
在任何信道中,码元传输的速率是有上限的,否则就会出现码间串扰的问题,使接收端对码元的判决(即识别)成为不可能。
如果信道的频带越宽,也就是能够通过的信号高频分量越多,那么就可以用更高的速率传送码元而不出现码间串扰。
噪声存在于所有的电子设备和通信信道中。
噪声是随机产生的,它的瞬时值有时会很大。因此噪声会使接收端对码元的判决产生错误。
但噪声的影响是相对的。如果信号相对较强,那么噪声的影响就相对较小。
信噪比就是信号的平均功率和噪声的平均功率之比。常记为S/N,并用分贝 (dB) 作为度量单位。即:信噪比(dB) = 10 log10(S/N ) (dB)
例如,当S/N=10时,信噪比为10dB,而当S/N=1000时,信噪比为30dB。
1984年,香农 (Shannon) 用信息论的理论推导出了带宽受限且有高斯白噪声干扰的信道的极限、无差错的信息传输速率(香农公式)。
信道的极限信息传输速率 C 可表达为:
C = W log2(1+S/N) (bit/s)
W 为信道的带宽(以 Hz 为单位);
S 为信道内所传信号的平均功率;
N 为信道内部的高斯噪声功率。
对于频带宽度已确定的信道,如果信噪比不能再提高了,并且码元传输速率也达到了上限值,那么还有办法提高信息的传输速率。
这就是:用编码的方法让每一个码元携带更多比特的信息量。
传输媒体也称为传输介质或传输媒介,它就是数据传输系统中在发送器和接收器之间的物理通路。
在导引型传输媒体中,电磁波被导引沿着固体媒体(铜线或光纤)传播。
非导引型传输媒体就是指自由空间。在非导引型传输媒体中,电磁波的传输常称为无线传输。
最常用的传输媒体。
模拟传输和数字传输都可以使用双绞线,其通信距离一般为几到十几公里。
屏蔽双绞线 STP (Shielded Twisted Pair)
带金属屏蔽层
无屏蔽双绞线 UTP (Unshielded Twisted Pair)
不带金属屏蔽层
对传送数据来说,现在最常用的 UTP 是5类线(Category 5 或 CAT5)。
绞合线类别 | 带宽 | 线缆特点 | 典型应用 |
---|---|---|---|
3 | 16 MHz | 2对4芯双绞线 | 模拟电话;曾用于传统以太网(10 Mbit/s) |
4 | 20 MHz | 4 对 8 芯双绞线 | 曾用于令牌局域网 |
5 | 100 MHz | 与 4 类相比增加了绞合度 | 传输速率不超过100Mbit/s 的应用 |
5E (超5类) | 125 MHz | 与 5 类相比衰减更小 | 传输速率不超过 1 Gbit/s的应用 |
6 | 250 MHz | 与 5 类相比改善了串扰等性能 | 传输速率高于 1 Gbit/s 的应用 |
7 | 600 MHz | 使用屏蔽双绞线 | 传输速率高于 10 Gbit/s的应用 |
同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。
同轴电缆的带宽取决于电缆的质量。
50 Ω 同轴电缆 —— LAN / 数字传输常用
75 Ω 同轴电缆 —— 有线电视 / 模拟传输常用
光纤是光纤通信的传输媒体。
由于可见光的频率非常高,约为 108 MHz 的量级,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。
当光线从高折射率的媒体射向低折射率的媒体时,其折射角将大于入射角。因此,如果入射角足够大,就会出现全反射,光也就沿着光纤传输下去。只要从纤芯中射到纤芯表面的光线的入射角大于某个临界角度,就可产生全反射。
多模光纤
可以存在多条不同角度入射的光线在一条光纤中传输。这种光纤就称为多模光纤。
单模光纤
若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,它可使光线一直向前传播,而不会产生多次反射。这样的光纤称为单模光纤。
常用的三个波段的中心分别位于 850 nm, 1300 nm 和 1550 nm。
所有这三个波段都具有 25000~30000 GHz 的带宽,可见光纤的通信容量非常大。
将自由空间称为“非导引型传输媒体”。
无线传输所使用的频段很广。
短波通信(即高频通信)主要是靠电离层的反射,但短波信道的通信质量较差,传输速率低。
微波在空间主要是直线传播。
传统微波通信有两种方式:
要使用某一段无线电频谱进行通信,通常必须得到本国政府有关无线电频谱管理机构的许可证。但是,也有一些无线电频段是可以自由使用的。例如:ISM。各国的 ISM 标准有可能略有差别。
复用 (multiplexing) 是通信技术中的基本概念。它允许用户使用一个共享信道进行通信,降低成本,提高利用率。
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个 TDM 帧中占用固定序号的时隙。
每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)的。
TDM 信号也称为等时 (isochronous) 信号。
时分复用的所有用户在不同的时间占用同样的频带宽度。
时分复用可能会造成线路资源的浪费
使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,用户对分配到的子信道的利用率一般是不高的。
常用的名词是码分多址 CDMA (Code Division Multiple Access)。
各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰。
这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。
每一个比特时间划分为 m 个短的间隔,称为码片 (chip)。
每个站被指派一个唯一的 m bit 码片序列。
例如,S 站的 8 bit 码片序列是 00011011。
发送比特 1 时,就发送序列 00011011,
发送比特 0 时,就发送序列 11100100。
S 站的码片序列:(–1 –1 –1 +1 +1 –1 +1 +1)
假定S站要发送信息的数据率为 b bit/s。由于每一个比特要转换成 m 个比特的码片,因此 S 站实际上发送的数据率提高到 mb bit/s,同时 S 站所占用的频带宽度也提高到原来数值的 m 倍。
这种通信方式是扩频(spread spectrum)通信中的一种。
扩频通信通常有两大类:
每个站分配的码片序列不仅必须各不相同,并且还必须互相正交 (orthogonal)。
在实用的系统中是使用伪随机码序列。
令向量 S 表示站 S 的码片向量,令 T 表示其他任何站的码片向量。
两个不同站的码片序列正交,就是向量 S 和T 的规格化内积 (inner product) 等于 0:
任何一个码片向量和该码片向量自己的规格化内积都是 1 。
一个码片向量和该码片反码的向量的规格化内积值是 –1。
在早期电话网中,从市话局到用户电话机的用户线是采用最廉价的双绞线电缆,而长途干线采用的是频分复用 FDM 的模拟传输方式。
与模拟通信相比,数字通信无论是在传输质量上还是经济上都有明显的优势。
目前,长途干线大都采用时分复用 PCM 的数字传输方式。
脉码调制 PCM 体制最初是为了在电话局之间的中继线上传送多路的电话。
最主要的是以下两个方面:
同步光纤网 SONET (Synchronous Optical Network) 的各级时钟都来自一个非常精确的主时钟。
SONET 为光纤传输系统定义了同步传输的线路速率等级结构
对电信信号称为第 1 级同步传送信号 STS-1 (Synchronous Transport Signal),其传输速率是 51.84 Mbit/s。
对光信号则称为第 1 级光载波 OC-1 (OC 表示Optical Carrier)。
现已定义了从 51.84 Mbit/s (即OC-1) 一直到 9953.280 Mbit/s (即 OC-192/STS-192) 的标准。
ITU-T 以美国标准 SONET 为基础,制订出国际标准同步数字系列 SDH (Synchronous Digital Hierarchy)。
一般可认为 SDH 与 SONET 是同义词。
其主要不同点是:SDH的基本速率为155.52 Mbit/s,称为第 1 级同步传递模块 (Synchronous Transfer Module),即 STM-1,相当于 SONET 体系中的 OC-3 速率。
线路速率(Mbit/s) | SONET符号 | ITU-T符号 | 表示线路速率的常用近似值 |
---|---|---|---|
51.840 | OC-1/STS-1 | ||
155.520 | OC-3/STS-3 | STM-1 | 155 Mbit/s |
466.560 | OC-9/STS-9 | STM-3 | |
622.080 | OC-12/STS-12 | STM-4 | 622 Mbit/s |
933.120 | OC-18/STS-18 | STM-6 | |
1244.160 | OC-24/STS-24 | STM-8 | |
2488.320 | OC-48/STS-48 | STM-16 | 2.5 Gbit/s |
4976.640 | OC-96/STS-96 | STM-32 | |
9953.280 | OC-192/STS-192 | STM-64 | 10 Gbit/s |
39813.120 | OC-768/STS-768 | STM-256 | 40 Gbit/s |
用户要连接到互联网,必须先连接到某个ISP。
在互联网的发展初期,用户都是利用电话的用户线通过调制解调器连接到ISP的,电话用户线接入到互联网的速率最高仅达到56 kbit/s。
美国联邦通信委员会FCC原来认为只要双向速率之和超过200 kbit/s 就是宽带。但 2015 年重新定义为:
宽带下行速率要达到 25 Mbit/s
宽带上行速率要达到 3 Mbit/s
从宽带接入的媒体来看,可以划分为两大类:
非对称数字用户线 ADSL (Asymmetric Digital Subscriber Line) 技术就是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。
标准模拟电话信号的频带被限制在 300~3400 Hz 的范围内,但用户线本身实际可通过的信号频率仍然超过 1 MHz。
ADSL 技术就把 0~4 kHz 低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。
DSL 就是数字用户线 (Digital Subscriber Line) 的缩写。
ADSL 的传输距离取决于数据率和用户线的线径(用户线越细,信号传输时的衰减就越大)。
ADSL 所能得到的最高数据传输速率与实际的用户线上的信噪比密切相关。
例如:
0.5 毫米线径的用户线,传输速率为 1.5~2.0 Mbit/s 时可传送5.5公里,但当传输速率提高到 6.1 Mbit/s 时,传输距离就缩短为 3.7 公里。
如果把用户线的线径减小到 0.4 毫米,那么在 6.1 Mbit/s 的传输速率下就只能传送 2.7 公里。
DMT 调制技术采用频分复用的方法,把 40 kHz 以上一直到 1.1 MHz 的高端频谱划分为许多子信道,其中 25 个子信道用于上行信道,而 249 个子信道用于下行信道。
每个子信道占据 4 kHz 带宽(严格讲是 4.3125 kHz),并使用不同的载波(即不同的音调)进行数字调制。这种做法相当于在一对用户线上使用许多小的调制解调器并行地传送数据。
由于用户线的具体条件往往相差很大(距离、线径、受到相邻用户线的干扰程度等都不同),因此 ADSL 采用自适应调制技术使用户线能够传送尽可能高的数据率。
当 ADSL 启动时,用户线两端的 ADSL 调制解调器就测试可用的频率、各子信道受到的干扰情况,以及在每一个频率上测试信号的传输质量。
ADSL 不能保证固定的数据率。对于质量很差的用户线甚至无法开通 ADSL。
通常下行数据率在32 kbit/s到6.4 Mbit/s之间,而上行数据率在 32 kbit/s 到 640 kbit/s 之间。
HFC (Hybrid Fiber Coax) 网是在目前覆盖面很广的有线电视网 CATV 的基础上开发的一种居民宽带接入网。
HFC 网除可传送 CATV 外,还提供电话、数据和其他宽带交互型业务。
现有的 CATV 网是树形拓扑结构的同轴电缆网络,它采用模拟技术的频分复用对电视节目进行单向传输。
HFC 网对 CATV 网进行了改造。
HFC 网将原 CATV 网中的同轴电缆主干部分改换为光纤,并使用模拟光纤技术。
在模拟光纤中采用光的振幅调制AM,这比使用数字光纤更为经济。
模拟光纤从头端连接到光纤结点 (fiber node),即光分配结点 ODN (Optical Distribution Node)。在光纤结点光信号被转换为电信号。在光纤结点以下就是同轴电缆。
用户接口盒 UIB (User Interface Box) 要提供三种连接,即:
使用同轴电缆连接到机顶盒 (set-top box),然后再连接到用户的电视机。
使用双绞线连接到用户的电话机。
使用电缆调制解调器连接到用户的计算机。
电缆调制解调器是为 HFC 网而使用的调制解调器。
电缆调制解调器最大的特点就是传输速率高。
电缆调制解调器比在普通电话线上使用的调制解调器要复杂得多,并且不是成对使用,而是只安装在用户端。
FTTx 是一种实现宽带居民接入网的方案,代表多种宽带光纤接入方式。
FTTx 表示 Fiber To The…(光纤到…),例如: