hive案例调优

无效ID在关联时的数据倾斜问题
问题:日志中常会出现信息丢失,比如每日约为 20 亿的全网日志,其中的 user_id 为主 键,在日志收集过程中会丢失,出现主键为 null 的情况,如果取其中的 user_id 和 bmw_users 关联,就会碰到数据倾斜的问题。原因是 Hive 中,主键为 null 值的项会被当做相同的 Key 而分配进同一个计算 Map。
解决方法 1:user_id 为空的不参与关联,子查询过滤 null
SELECT * FROM log a
JOIN bmw_users b ON a.user_id IS NOT NULL AND a.user_id=b.user_id
UNION All SELECT * FROM log a WHERE a.user_id IS NULL

解决方法 2 如下所示:函数过滤 null
SELECT * FROM log a LEFT OUTER
JOIN bmw_users b ON
CASE WHEN a.user_id IS NULL THEN CONCAT(‘dp_hive’,RAND()) ELSE a.user_id END =b.user_id;
调优结果:原先由于数据倾斜导致运行时长超过 1 小时,解决方法 1 运行每日平均时长 25 分钟,解决方法 2 运行的每日平均时长在 20 分钟左右。优化效果很明显。
  我们在工作中总结出:解决方法2比解决方法1效果更好,不但IO少了,而且作业数也少了。解决方法1中log读取两次,job 数为2。解决方法2中 job 数是1。这个优化适合无效 id(比如-99、 ‘’,null 等)产生的倾斜问题。把空值的 key 变成一个字符串加上随机数,就能把倾斜的 数据分到不同的Reduce上,从而解决数据倾斜问题。因为空值不参与关联,即使分到不同 的 Reduce 上,也不会影响最终的结果。附上 Hadoop 通用关联的实现方法是:关联通过二次排序实现的,关联的列为 partion key,关联的列和表的 tag 组成排序的 group key,根据 pariton key分配Reduce。同一Reduce内根据group key排序。

你可能感兴趣的:(hive)