【行人重识别最新进展】2017-2018年行人重识别算法精度统计

2017-2018年行人重识别算法在开源数据集上的表现

Market-1501

Method

Time

Single Query

Multi. Query

rank-1

mAP

rank-1

mAP

Verif-Identif.

+ LSRO [1]

2017 ICCV

83.97

66.07

88.42

76.10

Basel. + LSRO [1]

2017 ICCV

78.06

56.23

85.12

68.52

SVDNet(C) [2]

2017 ICCV

80.5

55.9

 

 

SVDNet(R,1024-dim) [2]

2017 ICCV

82.3

62.1

 

 

M-net [3]

2017 ICCV

73.1 

 

 

 

HP-net [3]

2017 ICCV

76.9

 

 

 

CADL [7]

2017 CVPR

73.84

47.11

80.85

55.58

Fusion [9]

2017 CVPR

80.31  

57.53

86.79

66.70

SSM [10]

2017 CVPR

82.21

68.80

88.18

76.18

Spindle [12]

2017 CVPR

76.9

 

 

 

DeepAlign. [13]

2017 ICCV

81.0

63.4

 

 

Zhong et al. [14]

2017 CVPR

77.11

63.63

 

 

TriNet (Re-

ranked) [15]

2017 ICCV

86.67

81.07

91.75

87.18

PDC [16]

2017 ICCV

84.14

63.41

 

 

DPFL [17]

2017 ICCV

88.6

72.6

92.2

80.4

DPFL(2+) [17]

2017 ICCV

88.9

73.1

92.3

80.7

PSE [18]

2018 CVPR

87.7

69.0

 

 

PSE+ ECN

(rank-dist) [18]

2018 CVPR

90.3

84.0

 

 

IDE∗+Cam

Style+RE [19]

2018 CVPR

89.49

71.55

 

 

MobileNet+DML [20]

2018 CVPR

87.73

68.83

91.66

77.14

Resnet50-res5c (multi-scale) 83.58 64.25+DSR (fine-tuning model) [21]

2018 CVPR

83.58

64.25

 

 

DuATM [23]

2018 CVPR

91.42

76.62

 

 

HA-CNN [25]

2018 CVPR

91.2

75.7

93.8

82.8

SPReIDcombined-ft*+re-ranking [26]

2018 CVPR

94.63

90.96

 

 

MLFN [27]

2018 CVPR

90.0

74.3

92.3

82.4

BraidNet-CS

+ SRL [29]

2018 CVPR

83.70

69.48

 

 

Pose-transfer

(D, Tri) [30]

2018 CVPR

87.65

68.92

 

 

DaRe(De)+RE+RR [31]

2018 CVPR

90.9

86.7

 

 

TFusion-sup [32]

2018 CVPR

73.13

 

 

 

Chen et al. [33]

2018 ECCV

81.8

93.3

87.9

95.3

HAP2S_E [34]

2018 ECCV

84.20

69.76

 

 

HAP2S_P [34]

2018 ECCV

84.59

69.43

 

 

Mancs [35]

2018 ECCV

93.1

82.3

95.4

87.5

Suh et al. [37]

2018 ECCV

93.4

89.9

95.4

93.1

Base Model

+ SGGNN [38]

2018 ECCV

92.3

82.8

 

 

 

 

DukeMTMC-reID

Method

Time

rank-1

mAP

Basel. + LSRO [1]

2017 ICCV

67.68

47.13

SVDNet (C) [2]

2017 ICCV

67.6

45.8

SVDNet (R) [2]

2017 ICCV

76.7

56.8

DPFL [17]

2017 ICCV

79.2

60.6

PSE [18]

2018 CVPR

79.8

62.0

PSE+ ECN

(rank-dist) [18]

2018 CVPR

85.2

79.8

IDE∗+Cam

Style+RE [19]

2018 CVPR

78.32

57.61

DuATM [23]

2018 CVPR

81.82

64.58

HA-CNN [25]

2018 CVPR

80.5

63.8

Inception-V3ft*+re-ranking [26]

2018 CVPR

89.41

84.82

SPReIDcombined-ft*+re-ranking [26]

2018 CVPR

88.96

84.99  

MLFN [27]

2018 CVPR

81.0

62.8

BraidNet-CS

+ SRL [29]

2018 CVPR

76.44

59.49

DaRe(De)+RE+RR [31]

2018 CVPR

84.4

80.0

HAP2S_E [34]

2018 ECCV

76.08

59.58

HAP2S_P [34]

2018 ECCV

75.94

60.64

Mancs [35]

2018 ECCV

84.9

71.8

Suh et al. [37]

2018 ECCV

88.3

83.9

Base Model

+ SGGNN [38]

2018 ECCV

81.1

68.2

 

 

CUHK03-labeled

Method

Time

rank-1

rank-5

rank-10

rank-20

mAP

Basel.+LSRO [1]

2017 ICCV

73.1

92.7

96.7

 

77.4

Verif-Identif. + LSRO [1]

2017 ICCV

84.6

97.6

98.9

 

87.4

SVDNet(C) [2]

2017 ICCV

68.5

 

 

 

73.3

SVDNet(R,1024-dim) [2]

2017 ICCV

81.8

 

 

 

84.8

M-net [3]

2017 ICCV

88.2

98.2

99.1

99.5

 

HP-net [3]

2017 ICCV

91.8

98.4

99.1

99.6

 

Quadruplet + MargOHNM [6]

2017 CVPR

75.53

95.15

99.16

 

 

Quadruplet [6]

2017 CVPR

74.47

96.92

98.95

 

 

Fusion [9]

2017 CVPR

74.21

94.33

97.54

99.25

 

SSM [10]

2017 CVPR

76.6

 

94.6

98.0

 

Spindle [12]

2017 CVPR

88.5

97.8

98.6

99.2

 

DeepAlign. [13]

2017 ICCV

85.4

97.6

99.4

99.9

90.9

PDC [16]

2017 ICCV

88.70

98.61

99.24

99.67

 

DPFL [17]

2017 ICCV

86.7

82.8

 

 

 

Guo et al. [24]

2018 CVPR

87.50

97.85

99.45

 

 

SPReIDcombined-ft*+re-ranking [26]

2018 CVPR

96.22

99.34

99.7

 

 

MLFN [27]

2018 CVPR

82.8

 

 

 

 

BraidNet-CS

+ SRL [29]

2018 CVPR

88.18

 

98.66

99.48

 

DaRe(De)+RE+RR [31]

2018 CVPR

73.8

 

 

 

74.7

Chen et al. [33]

2018 ECCV

92.5

98.8

 

 

 

HAP2S_P [34]

2018 ECCV

90.39

99.54

99.90

 

 

Mancs [35]

2018 ECCV

93.8

99.3

99.8

 

 

Suh et al. [37]

2018 ECCV

91.5  

99.0

99.5

99.9

 

Base Model

+ SGGNN [38]

2018 ECCV

95.3 

99.1

99.6

 

94.3

MC-PPMN (hnm) [39]

2018 AAAI

86.36 

98.54

99.66

 

 

 

 

CUHK01(p=486)

Method

Time

rank-1

rank-5

rank-10

rank-20

Quadruplet + MargOHNM [6]

2017 CVPR

62.55

83.44

89.71

 

CSBT [8]

2017 CVPR

51.2

76.3

 

91.8

Spindle [12]

2017 CVPR

79.9

94.4

97.1

98.6

DeepAlign. [13]

2017 ICCV

75.0  

93.5

95.7

97.7

Chen et al. [33]

2018 ECCV

84.8

95.1

98.4

 

Suh et al. [37]

2018 ECCV

80.7

94.4

97.3

98.6

MC-PPMN (hnm) [39]

2018 AAAI

78.95

94.67

97.64

 

 

 

CUHK01(p=100)

Method

Time

rank-1

rank-5

rank-10

rank-20

DeepAlign. [13]

2017 ICCV

88.5   

98.4

99.6

99.9

Guo et al. [24]

2018 CVPR

88.20

98.20

99.35

 

BraidNet-CS

+ SRL [29]

2018 CVPR

93.04

 

99.97

100.00

Suh et al. [37]

2018 ECCV

90.4

97.1

98.1

98.9

MC-PPMN (hnm) [39]

2018 AAAI

93.45

99.62

99.98

 

 

 

Viper

Method

Time

rank-1

rank-5

rank-10

rank-20

M-net [3]

2017 ICCV

51.6  

73.1

81.6

88.3

HP-net [3]

2017 ICCV

76.9

91.3

94.5

96.7

SHaPE [5]

2017 ICCV

34.26

57.34

67.86

80.78

Quadruplet + MargOHNM [6]

2017 CVPR

49.05 

73.10

81.96

 

CSBT [8]

2017 CVPR

36.6

66.2

 

88.3

Fusion [9]

2017 CVPR

38.08

64.14

73.52

82.91

SSM [10]

2017 CVPR

53.73 

 

91.49

96.08

Spindle [12]

2017 CVPR

53.8

74.1

83.2

92.1

DeepAlign. [13]

2017 ICCV

48.7 

74.7

85.1

93.0

PDC [16]

2017 ICCV

51.27

74.05

84.18

91.46

Guo et al. [24]

2018 CVPR

50.10

73.10

84.35

 

MC-PPMN [39]

2018 AAAI

50.13 

81.17

91.46

 

 

 

PRW

Method

Time

rank-1

mAP

NPSM [4]

2017 ICCV

53.1

24.2

Zhong et al. [14]

2017 CVPR

52.54

31.51

 

 

MARS

Method

time

Single Query

rank-1

rank-5

rank-20

mAP

Fusion+XQDA [9]

2017 CVPR

71.77 

86.57

93.08

56.05

STRN [11]

2017 CVPR

70.6

90.0

97.6

50.7

Zhong et al. [14]

2017 CVPR

73.94

 

 

68.45

TriNet (Re-

ranked) [15]

2017 ICCV

81.21

90.76

 

77.43

PSE [18]

2018 CVPR

72.1

 

 

56.9

PSE+ ECN

(rank-dist) [18]

2018 CVPR

76.7

 

 

71.8

SpaAtn+Q+TemAtn+Ind [22]

2018 CVPR

82.3

 

 

65.8

DuATM [23]

2018 CVPR

78.74

90.86

95.76

62.26

Zhang et al. [28]

2018 CVPR

71.2  

85.7

91.8

94.3

DaRe(De)+RE+RR [31]

2018 CVPR

85.1

 

 

81.9

Suh et al. [37]

2018 ECCV

85.1

94.2

97.4

83.9

 

 

QMUL GRID

Method

Time

rank-1

rank-5

rank-10

rank-20

SSM[ [10]

2017 CVPR

27.20

 

61.12

70.56

TFusion-sup [32]

2018 CVPR

64.10

91.90

96.50

 

NK3ML [36]

2018 ECCV

27.20

 

60.96

71.04

 

 

iLIDS-VID

Method

Time

rank-1

rank-5

rank-10

rank-20

STRN [11]

2017 CVPR

55.2

 

86.5

97.0

Spindle [12]

2017 CVPR

66.3  

86.6

91.8

95.3

SpaAtn+Q+TemAtn+Ind [22]

2018 CVPR

80.2

 

 

 

Zhang et al. [28]

2018 CVPR

60.2

84.7

91.7

95.2

MC-PPMN [39]

2018 AAAI

62.69

84.80

93.31

 

 

 

PRID2011

Method

Time

rank-1

rank-5

rank-10

rank-20

SSM [10]

2017 CVPR

72.98

 

96.76

99.11

STRN [11]

2017 CVPR

79.4

 

94.4

99.3

Spindle [12]

2017 CVPR

67.0

89.0

89.0

92.0

SpaAtn+Q+TemAtn+Ind [22]

2018 CVPR

93.2

 

 

 

Zhang et al. [28]

2018 CVPR

85.2

97.1

98.9

99.6

MC-PPMN [39]

2018 AAAI

34.00

60.00

69.00

 

 

 

 

 

 

 

 

 

3DPeS

Method

Time

rank-1

rank-5

rank-10

rank-20

Spindle [12]

2017 CVPR

62.1

83.4

90.5

95.7

 

参考文献:

[1] Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro

[2] SVDNet for Pedestrian Retrieval

[3] HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

[4] Neural Person Search Machines

[5] SHaPE: A Novel Graph Theoretic Algorithm for Making Consensus-based Decisions in Person Re-identification Systems

[6] Beyond triplet loss: a deep quadruplet network for person re-identification

[7] Consistent-Aware Deep Learning for Person Re-identification in a Camera Network

[8] Fast Person Re-identification via Cross-camera Semantic Binary Transformation

[9] Learning Deep Context-aware Features over Body and Latent Parts for Person Reidentification

[10] Scalable Person Re-identification on Supervised Smoothed Manifold

[11] see the forest for the trees:spitial and temporal recurrent neural networks for video-based re-id

[12] Spindle Net: Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion

[13] Deeply-Learned Part-Aligned Representations for Person Re-Identification

[14] Re-ranking Person Re-identification with k-reciprocal Encoding

[15] In Defense of the Triplet Loss for Person Re-Identification

[16] Pose-driven Deep Convolutional Model for Person Re-identification

[17] Person Re-Identification by Deep Learning Multi-Scale Representations

[18] A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

[19] Camera Style Adaptation for Person Re-identification

[20] Deep Mutual Learning

[21] Deep Spatial Feature Reconstruction for Partial Person Re-identification: Alignment-Free Approach

[22] Diversity Regularized Spatiotemporal Attention for Video-based Person Re-identification

[23] Dual Attention Matching Network for Context-Aware Feature Sequence based Person Re-Identification

[24] Efficient and Deep Person Re-Identification using Multi-Level Similarity

[25] Harmonious Attention Network for Person Re-Identification

[26] Human Semantic Parsing for Person Re-identification

[27] Multi-Level Factorisation Net for Person Re-Identification

[28] Multi-shot Pedestrian Re-identification via Sequential Decision Making

[29] Person Re-identification with Cascaded Pairwise Convolutions

[30] Pose Transferrable Person Re-Identification

[31] Resource Aware Person Re-identification across Multiple Resolutions

[32] Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns

[33] Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

[34] Hard-Aware Point-to-Set Deep Metric for Person Re-identification

[35] Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-identification

[36] Maximum Margin Metric Learning Over Discriminative Nullspace for Person Re-identification

[37] Part-Aligned Bilinear Representations for Person Re-identification

[38] Person Re-identification with Deep Similarity-Guided Graph Neural Network

[39] Multi-Channel Pyramid Person Matching Network for Person Re-Identification

你可能感兴趣的:(【行人重识别最新进展】2017-2018年行人重识别算法精度统计)