纯代码视角看分布式运算(上(wordcount)

一、wordcount:
 1、WordCountMap      
String line = value.toString();  
            
StringTokenizer token = new StringTokenizer(line);  
       
     
while (token.hasMoreTokens()) {
 
word.set(token.nextToken());  
context.write(word, one);
  
            }  
 
2、WordCountReduce
 
 
for (IntWritable val : values) {
  
 sum += val.get();  
            }  
            
context.write(key, new IntWritable(sum));  
 
 
 
3、main
 
job.setOutputKeyClass(Text.class);  
        
job.setOutputValueClass(IntWritable.class);  
  
        
job.setMapperClass(WordCountMap.class);  
       
job.setReducerClass(WordCountReduce.class);  
  
        
job.setInputFormatClass(TextInputFormat.class);  
        
job.setOutputFormatClass(TextOutputFormat.class);  
  
        
FileInputFormat.addInputPath(job, new Path(args[0]));  
       
 FileOutputFormat.setOutputPath(job, new Path(args[1]));  
  
        
job.waitForCompletion(true);  
 
二、Wc
1、Map
 
String line = value.toString();
      StringTokenizer tokenizer = new StringTokenizer(line);
      while (tokenizer.hasMoreTokens()) {
          word.set(tokenizer.nextToken());
          output.collect(word, one);
}
 
 
2、Reduce
 
int sum = 0;
      while (values.hasNext()) {
          sum += values.next().get();
      }
      output.collect(key, new IntWritable(sum));
 
 
 
 
3、Main
 
JobConf conf = new JobConf(wc.class);
  conf.setJobName("wordcount");
 
  conf.setOutputKeyClass(Text.class);
  conf.setOutputValueClass(IntWritable.class);
 
  conf.setMapperClass(Map.class);
  conf.setCombinerClass(Reduce.class);
  conf.setReducerClass(Reduce.class);
 
  conf.setInputFormat(TextInputFormat.class);
  conf.setOutputFormat(TextOutputFormat.class);
 
  FileInputFormat.setInputPaths(conf, new Path(args[0]));
  FileOutputFormat.setOutputPath(conf, new Path(args[1]));
 
  JobClient.runJob(conf);

你可能感兴趣的:(随记)