作者:DeppWang、原文地址
题目来源
一道做智能的对话机器人公司的算法测试题
题目描述
有一个矩形的水槽被分为了 N * M 个格子,每个格子内的高度都不同,每个格子和直接相邻的格子相通(对角相邻的不相通)。从最左上角的格子注入水,水会向相通的较低的或同样高的格子流动,但不会流向较高的格子。请写程序计算水一共会流经多少个格子?
例如如果格子高度如下分布:
3 | 5 | 1
---------
2 | 1 | 5
---------
4 | 2 | 1
则水会从左上角流经 3、2、1 三个格子,答案为 3。
解题方案
思路
- 需要利用广度优先搜索(队列)的思路
- 将元素位置作为队列元素,而不使用元素值作为队列元素
- 将 [0, 0] 加入队列,依次遍历队列,将四周小于当前数值的元素加入队列,直到遍历完
3 | 5 | 1
---------
2 | 1 | 5
---------
4 | 2 | 1
3
[[0,0]]
3 2
[[0,0],[1,0]]
↑
3 2 1
[[0,0],[1,0],[1,1]]
↑
5 | 5 | 1
---------
2 | 1 | 5
---------
4 | 2 | 1
5
[[0,0]]
5 5 2
[[0,0],[0,1],[1,0]]
↑
5 5 2 1 1
[[0,0],[0,1],[1,0],[0,2],[1,1]]
↑
5 5 2 1 1
[[0,0],[0,1],[1,0],[0,2],[1,1]] [1,1] 已存在,跳过
↑
5 5 2 1 1
[[0,0],[0,1],[1,0],[0,2],[1,1]]
↑
5 5 2 1 1
[[0,0],[0,1],[1,0],[0,2],[1,1]]
↑
- 时间复杂度:O(N^2)。N 为格子数量,因需要判断元素在队列中是否已经存在,所以需要跟其他元素比较
- 空间复杂度:O(N)。N 为格子数量,最长需要长度为 N 的额外队列
代码
class Solution:
def printGridNumber(self, height_arr):
def judge_contain(key, queue):
for x in queue:
if x == key:
return True
return False
def append(queue, i, j):
xlen = len(height_arr)
ylen = len(height_arr[0])
if i - 1 >= 0 and height_arr[i - 1][j] <= height_arr[i][j] and not judge_contain([i - 1, j], queue):
queue.append([i - 1, j])
if j - 1 >= 0 and height_arr[i][j - 1] <= height_arr[i][j] and not judge_contain([i, j - 1], queue):
queue.append([i, j - 1])
if i + 1 < xlen and height_arr[i + 1][j] <= height_arr[i][j] and not judge_contain([i + 1, j], queue):
queue.append([i + 1, j])
if j + 1 < ylen and height_arr[i][j + 1] <= height_arr[i][j] and not judge_contain([i, j + 1], queue):
queue.append([i, j + 1])
queue = [[0, 0]]
append(queue, 0, 0)
for x in queue:
append(queue, x[0], x[1])
# print(queue)
return len(queue)
if __name__ == '__main__':
solution = Solution()
height_arr = [[3, 2, 1], [3, 2, 1], [2, 3, 1]]
print(solution.printGridNumber(height_arr))
测试用例
[[3, 5, 1], [2, 1, 5], [4, 2, 1]] # input
3 # expect value
[[5, 5, 1], [2, 1, 5], [4, 2, 1]]
5
[[3, 2, 1], [3, 2, 1], [3, 2, 1]]
9
[[3, 2, 1], [3, 2, 1], [2, 3, 1]]
8
[[6, 3, 4, 2], [5, 4, 4, 1], [3, 3, 2, 1]]
12
错误思路
- 直接遍历所有,如果当前值小于左上角、小于周围的值、周围的值小于左上角
class Solution:
def printGridNumber(self, height_arr):
def judge(i, j):
left_top_height = height_arr[0][0]
xlen = len(height_arr)
ylen = len(height_arr[0])
if i - 1 >= 0 and left_top_height >= height_arr[i - 1][j] >= height_arr[i][j]:
return True
if j - 1 >= 0 and left_top_height >= height_arr[i][j - 1] >= height_arr[i][j]:
return True
if i + 1 < xlen and left_top_height >= height_arr[i + 1][j] >= height_arr[i][j]:
return True
if j + 1 < ylen and left_top_height >= height_arr[i][j + 1] >= height_arr[i][j]:
return True
return False
if len(height_arr) == 0:
return
if len(height_arr[0]) == 0:
return
left_top_height = height_arr[0][0]
# print(left_top_height)
number = 1
for i in range(len(height_arr)):
for j in range(len(height_arr[0])):
if i == 0 and j == 0:
continue
if height_arr[i][j] <= left_top_height and judge(i, j):
number += 1
return number
if __name__ == '__main__':
solution = Solution()
height_arr = [[3,5,1],[2,1,5],[4,2,1]]
print(solution.printGridNumber(height_arr))