ThreadPoolExecutor-线程池源码

最近仔细学习了一下java 线程池的源码,这里来一起分享下,如果有错误的地方,欢迎指正!

我们将会从一下六个方面介绍:

ThreadPoolExecutor-线程池源码_第1张图片

二、构造参数

  • corePoolSize:线程池核心线程数大小
  • maximumPoolSize:线程池线程数最大值,达到最大值后线程池不会再增加线程执行任务
  • keepAliveTime:线程池中超过corePoolSize数目的空闲线程最大存活时间
  • allowCoreThreadTimeOut为 true的核心线程有效时间 unit:时间单位
  • workQueue:阻塞任务队列,用于保存任务以及为工作线程提供待执行的任务
  • threadFactory:线程工厂,线程生成器
  • handler:当提交任务数超过maxmumPoolSize+workQueue之和时,任务会交给RejectedExecutionHandler来处理
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) 

不同类型的线程池最终都会调用这个构造函数

三、常用的线程池

1.FixedSizeThreadPool

public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue(),
                                      threadFactory);
    }

可以看到corePoolSize和maximumPoolSize均为nThreads参数,并且没有超时且队列是没有边界的。所以该线程池一旦开启,最多会有 nThreads个线程,且线程一旦创建,就不会销毁。只要有任务提交,就会添加给核心线程或加入队列。

2.SingleThreadPool

public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue()));
    }

SingleThreadPool创建一个Worker线程操作一个无边界的队列。如果使用该线程池,那么所有提交的任务将会按照顺序被执行。

3.CachedThreadPool

public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue());
    }

CachedThreadPool只要需要新线程就会创建线程,如果之前创建的线程还可以复用,那么就会复用之前的线程。

4.ScheduledThreadPool

public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }

ScheduledThreadPool核心线程数量固定,非核心线程数量为Integer.MAX_VALUE,该线程池主要用于执行周期性的任务或在延时一段时间后执行任务。

四、常见的拒绝策略

CallerRunsPolicy 

在当前线程执行

/**
 * A handler for rejected tasks that runs the rejected task
 * directly in the calling thread of the {@code execute} method,
 * unless the executor has been shut down, in which case the task
 * is discarded.
 */
public static class CallerRunsPolicy implements RejectedExecutionHandler {
 /**
 * Creates a {@code CallerRunsPolicy}.
 */
 public CallerRunsPolicy() { }
 /**
 * Executes task r in the caller's thread, unless the executor
 * has been shut down, in which case the task is discarded.
 *
 * @param r the runnable task requested to be executed
 * @param e the executor attempting to execute this task
 */
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
 if (!e.isShutdown()) {
 r.run();
 }
 }
}

AbortPolicy

直接抛异常 RejectedExecutionException

/**
 * A handler for rejected tasks that throws a
 * {@code RejectedExecutionException}.
 */
public static class AbortPolicy implements RejectedExecutionHandler {
 /**
 * Creates an {@code AbortPolicy}.
 */
 public AbortPolicy() { }
 /**
 * Always throws RejectedExecutionException.
 *
 * @param r the runnable task requested to be executed
 * @param e the executor attempting to execute this task
 * @throws RejectedExecutionException always
 */
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
 throw new RejectedExecutionException("Task " + r.toString() +
 " rejected from " +
 e.toString());
 }
}

DiscardPolicy

直接丢弃拒绝线程

/**
 * A handler for rejected tasks that silently discards the
 * rejected task.
 */
public static class DiscardPolicy implements RejectedExecutionHandler {
 /**
 * Creates a {@code DiscardPolicy}.
 */
 public DiscardPolicy() { }
 /**
 * Does nothing, which has the effect of discarding task r.
 *
 * @param r the runnable task requested to be executed
 * @param e the executor attempting to execute this task
 */
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
 }
}

DiscardOldestPolicy

丢弃一个未被处理的最久的线程,然后重试

/**
 * A handler for rejected tasks that discards the oldest unhandled
 * request and then retries {@code execute}, unless the executor
 * is shut down, in which case the task is discarded.
 */
public static class DiscardOldestPolicy implements
RejectedExecutionHandler {
 /**
 * Creates a {@code DiscardOldestPolicy} for the given executor.
 */
 public DiscardOldestPolicy() { }
 /**
 * Obtains and ignores the next task that the executor
 * would otherwise execute, if one is immediately available,
 * and then retries execution of task r, unless the executor
 * is shut down, in which case task r is instead discarded.
 *
 * @param r the runnable task requested to be executed
 * @param e the executor attempting to execute this task
 */
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
 if (!e.isShutdown()) {
 e.getQueue().poll();
 e.execute(r);
 }
 }
}

 

五、线程池的状态

状态 描述
RUNNING=111 线程池正常运行,可以接受新的任务并处理队 列中的任务
SHUTDOWN=000 关闭状态,不再接受新的任务,但是会执行队 列中的任务。在线程池处于 RUNNING 状态 时,调用 shutdown()方法会使线程池进入到 该状态。(finalize() 方法在执行过程中也会 调用shutdown()方法进入该状态)
STOP=001 不再接受新任务,不处理队列中的任务,中断 进行中的任务。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow() 方法会使线程池进入到该状 态
TIDYING=010 所有任务已经终止,workerCount为0,线程 状态转换到TIDYING,线程池进入该状态后 会调用 terminated() 方法进入 TERMINATED 状态
TERMINATED=011 terminate()函数执行完成后进入该状态。

 

 

 

 

 

 

 

 

 

 

 

 

转换关系如下图:

ThreadPoolExecutor-线程池源码_第2张图片

如下代码中 有一个控制变量ctl  (初始化值为线程数0,状态为RUNNING

ctl变量是整个类的核心,AtomicInteger保证了对这个变量的操作是原子的,保证多线程同步问题,用这 个变量保存了两个内容:

  • 所有有效线程的数量(workCount)
  • 线程池的状态(runState)  

AtomicInteger是一个32位的整数,为了将状态和数量放在一起,所以高3位用于表示表示状态,低29位表示数量

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    private static final int COUNT_BITS = Integer.SIZE - 3;
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }

    /*
     * Bit field accessors that don't require unpacking ctl.
     * These depend on the bit layout and on workerCount being never negative.
     */

    private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }

    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

六、执行流程 (重点)

下面我们以 execute 为入口来阅读 ThreadPoolExecutor 是如何执行给定的任务:

/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        // core thread
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // work queue
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 非核心线程
        else if (!addWorker(command, false))
            reject(command);
    }

其实注释中已经写的很详细了,execute 会分为三步来执行(这里就用到了ctl 变量来获取worker的数量)

  1. 如果小于corePoolSize的线程正在运行,那么创建一个核心线程,并将任务作为核心线程的第一个任务
  2. 如果一个任务可以加入到队列中,然后需要在此检查是否需要新建一个线程(因为可能存在一个线程在上次检查完之后被回收了)或者因为线 程池停止了。所以需要再次检查状态,如果不在RUNNING状态并且能够成功移除任务的话,那么调用reject方法,否则就调用addWorker(null, false)方法。
  3. 如果任务不能放入队列,会首先尝试添加一个新线程(非核心线程)。如果失败,则调用reject方法。

流程图如下:

ThreadPoolExecutor-线程池源码_第3张图片

addWorker的执行过程:

 /**
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

首先是两个死循环,外循环主要检查线程池运行状态,内循环检查workerCount之后再检查运行状态。下面简单分析一下哪些情况下才可以进入到 内循环,否则就直接返回false了。下面是可以进入到内循环的情况:

(1)rs>=SHUTDOWN为false,即线程池处于RUNNING状态

(2)rs == SHUTDOWN && firstTask == null && ! workQueue.isEmpty()这个条件为true,也就意味着三个条件同时满足,即线程池状态为 SHUTDOWN且firstTask为null且队列不为空,这种情况为处理队列中剩余任务。上面提到过当处于SHUTDOWN状态时,不接受新任务,但是会 处理完队列里面的任务。如果firstTask不为null,那么就属于添加新任务;如果firstTask为null,并且队列为空,那么就不需要再处理了。 当进入到内循环后,会首先获取当前运行的线程数量。首先判断当前运行线程数量是否大于等于CAPACITYA(2^29-1),其次根据是否是核心线程 与corePoolSize或者maximumPoolSize比较。所以线程的数量不会超过CAPACITY和maximumPoolSize的较小值。如果数量符合条件,那么就让 ctl加1,然后跳出外部循环。如果线程数量达到了最大,那么再判断当前状态,如果状态和之前的不一致了,那么继续外循环。

下面是可以跳出外 循环的情况:

(1)如果是核心线程,当前线程数量小于CAPACITY和corePoolSize中的较小值

(2)如果是非核心线程,当前线程数量小于CAPACITY和maximumPoolSize中的较小值。 一旦跳出外循环,表示可以创建创建线程,这里具体是Worker对象,Worker实现了Runnable接口并且继承AbstractQueueSynchronizer(AQS的东西请看下一篇《AQS源码分析》),内部 维持一个Runnbale的队列。try块中主要就是创建Worker对象,然后将其保存到workers中,workers是一个HashSet,表示工作线程的集合。然 后如果添加成功,则开启Worker所在的线程。如果开启线程失败,则调用addWorkerFailed方法,addWokerFailed用于回滚worker线程的创建

这里会对 workers.add(w); 操作进行加锁,t.start() 之后会调用 runWorker (这里如果想不明白可以去看下Worker的构造方法)

runWorker执行的过程:

/**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) { //一个线程处理多个task,也就是线程的重复利用
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

runWoker方法主要不断从队列中取得任务并执行。首先获得Worker所在的线程,在addWorker中获得Worker的Thread变量并调用start方法, 所以Worker是运行在Worker的Thread中,而thread变量是通过threadFactory创建的。可以看到首先获取Worker的firstTask对象,该对象有可 能为空,初始时对于核心线程不为空,但是对于非核心线程就为空,下面是一个循环,跳出循环的条件为task==null&&(task=getTask()) ==null,也就是说当没有任何任务的时候,就跳出循环了,跳出循环也就意味着Worker的run方法执行结束,也就意味着线程结束;否则会一直尝 试着从队列中获取任务来执行,getTask会阻塞,一旦获取到任务,就对Worker加锁,然后判断状态,如果状态处于STOP状态及之上,就不处理 任务了;否则处理任务,在处理任务之前,首先会调用beforeExecute,然后调用Runnbale方法的run方法,最后调用afterExecute,其中 beforeExecute和afterExecute都是空实现,继承ThreadPoolExecutor时可以实现,在每个任务运行之前和之后做一些处理工作。一旦一个任务执 行完毕后,将task置为null,然后继续尝试从队列中取出任务

流程图如下:

ThreadPoolExecutor-线程池源码_第4张图片

getTask相关流程:

/**
     * Performs blocking or timed wait for a task, depending on
     * current configuration settings, or returns null if this worker
     * must exit because of any of:
     * 1. There are more than maximumPoolSize workers (due to
     *    a call to setMaximumPoolSize).
     * 2. The pool is stopped.
     * 3. The pool is shutdown and the queue is empty.
     * 4. This worker timed out waiting for a task, and timed-out
     *    workers are subject to termination (that is,
     *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
     *    both before and after the timed wait, and if the queue is
     *    non-empty, this worker is not the last thread in the pool.
     *
     * @return task, or null if the worker must exit, in which case
     *         workerCount is decremented
     */
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

getTask从队列中取出任务;但是在以下几种情况下会返回null,上面说过如果返回null也就标识了runWorker中循环跳出,上面说过,runWorker 中的循环跳出意味着Worker线程执行完毕会回收,所以调用了decrementWorkerCount将Worker数量减1。下面返回null的情况 :

(1)由于调用了setMaximumPoolSize导致Worker的数量超过maximumPoolSize

(2)线程池处于STOP状态,STOP状态不再处理队列中的任务

(3)线程池处于SHUTDOWN并且queue为空。SHUTDOWN状态仍然处理已经在队列中的任务,但是如果queue为空,自然就不再处理了

(4)Worker在等待队列时超时

getTask内部依然是一个死循环,首先依然是判断状态,如果状态是STOP及以上,那么返回null;如果状态是SHUTDOWN且队列为空,那么也返 回null。这对应于情况2和3。 接下来是比较Worker的数量,首先获取Worker的数量以及是否需要超时标志,如果设置了allCoreThreadTimeOut为true,那么就意味着所以线 程都得检验超时;而如果没有设置为true,那么只需要在Worker数量超过corePoolSize时检查超时。接下来是判断数量是否超过 maximumPoolSize,如果超过了,则需要结束多余的Worker;如果超时了并且有时间限制,也需要停止线程。如果没有进入到if语句中,那么将 会尝试从队列中获取任务,如果需要有时间限制,那么就调用workQueue的poll方法,如果没有则调用take方法,如果可以从队列中取到任务,那 么就返回任务交由runWorker中去执行;但是如果返回失败,那么需要设置timeOut为true,这样在下一次进入循环时,会清除一个Worker

 

最终会调用 processWorkerExit 为死亡的worker做清理和记录

 

 

ps:给大家推荐个特别好的juc课程:https://edu.csdn.net/course/detail/22039

你可能感兴趣的:(多线程)