7-1 Knuth洗牌法 (20分)

Knuth 洗牌法是生成 { 1, 2, …, n } 的一个随机重排列的算法。与每次反复随机生成一个数字,直到获得一个不重复的新数字的算法不同,Knuth 洗牌法从原始序列 { 1, 2, …, n } 开始,逐次洗牌。洗牌的方法是从左到右,每轮从没确定的数字中随机抽取一个数,把它放到确定的位置上。

例如令 n 等于 4。我们从 { 1, 2, 3, 4 } 开始。记 i 到 N 之间的随机抽牌数为 random(i,N)。假设我们生成的随机数序列 random(i,4) (i=1, 2, 3, 4) 为 { 2, 4, 3, 4 }。则 Knuth 洗牌法是这样执行的:

  • random(1,4) = 2; 将位置 1 与位置 2 的数字交换,得到 { 2, 1, 3, 4 }
  • random(2,4) = 4; 将位置 2 与位置 4 的数字交换,得到 { 2, 4, 3, 1 }
  • random(3,4) = 3; 将位置 3 与位置 3 的数字交换,得到 { 2, 4, 3, 1 }
  • random(4,4) = 4; 将位置 4 与位置 4 的数字交换,得到 { 2, 4, 3, 1 }

现给定随机抽牌数字序列,请你输出 Knuth 洗牌法的结果序列。

输入格式:

输入在第一行中给出一个正整数 N(≤ 1000)。随后一行给出 N 个随机抽牌数字,数字间以空格分隔。题目保证第 i 个数在 i 到 N 之间。

输出格式:

在第一行中输出 Knuth 洗牌法的结果序列。数字间必须以 1 个空格分隔,行首尾不得有多余空格。

输入样例:

10
7 4 4 5 10 6 9 9 10 10

输出样例:

7 4 2 5 10 6 9 1 3 8

题意

思路1

代码1

#include 
#include 
using namespace std;
const int N = 1010;
int a[N];
int n, t;

int main()
{
	scanf("%d", &n);
	for(int i = 1; i <= n; i++)
		a[i] = i;
	for(int i = 1; i <= n; i++)
	{
		scanf("%d", &t);
		swap(a[t], a[i]);
	}
	for(int i = 1; i <= n; i++)
		printf("%d%c", a[i], (i == n) ? '\n' : ' ');
	return 0;
}

你可能感兴趣的:(PAT)