Hash小结

Poj1480Eqs

a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ->a1x13+ a2x23+ a3x3=-(a4x43+ a5x53  

问有多少个满足等式的非零x1,x2,x3,x4,x5组。)

中途相遇法,枚举x1,x2,x3得到左边式子的值插入hash表,然后枚举x4,x5找到对应的值就行了。

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <map>

#include <set>

#include <bitset>

#include <queue>

#include <stack>

#include <string>

#include <iostream>

#include <cmath>

#include <climits>

typedef long long LL ;

using namespace std;



const int maxn = 1e6 + 7;

const int Hash = 1e5 + 7;



struct HashMap

{

	int head[Hash + 10]; int size; int next[maxn*2]; int val[maxn*2]; int cnt[maxn*2];

	void init()

	{

		size = 0;  memset(head, -1, sizeof(head));

	}

	int ask(int x)

	{

		int k = (x%Hash + Hash) % Hash;

		for (int i = head[k]; i != -1; i = next[i]){

			if (val[i] == x) return cnt[i];

		}

		return 0;

	}

	void insert(int x)

	{

		int k = (x%Hash + Hash) % Hash;

		for (int i = head[k]; i != -1; i = next[i]){

			if (val[i] == x){

				cnt[i] ++; return;

			}

		}

		val[size] = x; cnt[size] = 1; next[size] = head[k];

		head[k] = size++;

		return;

	}

}m;



int gao(int i)

{

	return i*i*i;

}



int main()

{

	int a, b, c, d, e;

	while (cin>>a>>b>>c>>d>>e){

		int ans = 0;

		m.init();

		for (int i = -50; i <= 50; i++)if (i){

			for (int j = -50; j <= 50; j++)if (j){

				for (int k = -50; k <= 50; k++)if (k){

					int t = a*gao(i) + b*gao(j)+c*gao(k);

					m.insert(t);

				}

			}

		}

		for (int i = -50; i <= 50; i++)if (i){

			for (int j = -50; j <= 50; j++)if (j){

				int t = d*gao(i) + e*gao(j);

				ans += m.ask(-t);

			}

		}

		cout << ans << endl;

	}

	return 0;

}

 Poj2549  Sumsets

  题意:Given S, a set of integers, find the largest d such that a + b + c = d where a, b, c, and d are distinct elements of S.

 还是用中途相遇法搞下就好了。

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <map>

#include <set>

#include <bitset>

#include <queue>

#include <stack>

#include <string>

#include <iostream>

#include <cmath>

#include <climits>

typedef long long LL;

using namespace std;



const int Hash = 1e6 + 10;

const int maxn = 1e6 + 10;





struct HashMap

{

	int head[Hash + 10]; int size; int next[maxn + 10]; int val[maxn + 10]; int a[maxn + 10], b[maxn + 10];

	void init()

	{

		size = 0; memset(head, -1, sizeof(head));

	}

	void insert(int t, int x, int y)

	{

		int k = (t%Hash + Hash) % Hash;

		for (int i = head[k]; i != -1; i = next[i]){

			if (val[i] == t){

				if (a[i] == x&&b[i] == y) return;

			}

		}

		val[size] = t; next[size] = head[k]; a[size] = x; b[size] = y; head[k] = size++;

	}

	int ask(int t, int x, int y)

	{

		int k = (t%Hash + Hash) % Hash;

		for (int i = head[k]; i != -1; i = next[i]){

			if (val[i] == t){

				if (a[i] != x&&b[i] != x&&a[i] != y&&b[i] != y) return 1;

			}

		}

		return 0;

	}



}m;

int cmp(const int &a, const int &b)

{

	return a > b;

}

int a[1111];

int main()

{

	int n;

	while (scanf("%d", &n) != EOF&&n){

		for (int i = 0; i < n; i++){

			scanf("%d", &a[i]);

		}

		m.init();

		sort(a, a + n, cmp);

		for (int i = 0; i < n; i++){

			for (int j = 0; j < n; j++){

				if (i == j)continue;

				m.insert(a[i] + a[j], i, j);

			}

		}

		int flag = 1; int pos;

		for (int i = 0; flag&&i < n; i++){

			for (int j = 0; flag&&j < n; j++){

				if (i == j) continue;

				int t = m.ask(a[i] - a[j], i, j);

				if (t){

					flag = 0; pos = i; break;

				}

			}

		}

		if (flag){

			printf("no solution\n");

		}

		else printf("%d\n", a[pos]);

	}

	return 0;

}

Poj3274 Gold Balanced Lineup

就是给出一些数,找到最大的连续区间使得区间内对应的二进制位上的1的个数相等。

若区间l,r满足条件,sum[i][j] 表示前i个数的第j位上的1的个数和。

sum[r][1] - sum[l][1] = sum[r][2] - sum[l][2].....->sum[r][1] - sum[r][2] = sum[l][1] - sum[l][2];

每一位都减去某位的值过以后,若是存在l,r区间满足条件则处理过后的对应位的值相等,此时用hash搞下。

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <map>

#include <set>

#include <bitset>

#include <queue>

#include <stack>

#include <string>

#include <iostream>

#include <cmath>

#include <climits>

typedef long long LL;

using namespace std;



const int Hash = 1e6 + 10;

const int maxn = 2e5 + 10;

int k;

struct HashMap

{

	int head[Hash + 10]; int next[maxn + 10]; int val[maxn + 10]; int ans[maxn + 10][31];

	int pos[maxn + 10];

	int size;

	void init()

	{

		size = 0; memset(head, -1, sizeof(head));

	}

	int ask(int a[])

	{

		int t = 0;

		for (int i = 0; i < k; i++) t += a[i];

		int gg = (t%Hash + Hash) % Hash;

		for (int i = head[gg]; i != -1; i = next[i]){

			if (val[i] == t){

				int flag = 0;

				for (int j = 0; j < k; j++) {

					if (ans[i][j] != a[j]) {

						flag = 1; break;

					}

				}

				if (flag == 0) return pos[i];

			}

		}

		return -2;

	}

	void insert(int a[], int p)

	{

		int t = 0;

		for (int i = 0; i < k; i++) t += a[i];

		int gg = (t%Hash + Hash) % Hash;;

		for (int i = head[gg]; i != -1; i = next[i]){

			if (val[i] == t){

				int flag = 0;

				for (int j = 0; j < k; j++){

					if (ans[i][j] != a[j]){

						flag = 1; break;

					}

				}

				if (flag == 0) return;

			}

		}

		val[size] = t; next[size] = head[gg];

		pos[size] = p;

		for (int i = 0; i < k; i++) ans[size][i] = a[i];

		head[gg] = size++;

	}

}m;



int cnt[100];



void gao(int a)

{

	int len = 0;

	while (a){

		cnt[len++] += a % 2;

		a >>= 1;

	}

}



int main()

{

	int n; int a;

	while (scanf("%d%d", &n, &k) != EOF){

		int Max = 0;

		memset(cnt, 0, sizeof(cnt));

		m.init(); m.insert(cnt, -1);

		for (int i = 0; i < n; i++){

			scanf("%d", &a); gao(a);

			for (int j = k - 1; j >= 0; j--) cnt[j] -= cnt[0];

			int t = m.ask(cnt);

			if (t != -2) Max = max(Max, i - t);

			m.insert(cnt, i);

		}

		printf("%d\n", Max);

	}

	return 0;

}

Hdu3333 Turing Tree

区间长度3e4 ,1e5个询问。

给出区间,求区间内不同元素和的个数。

开始用莫队算法多了sqrt(n)的复杂度,超时了(或许姿势写戳了).后来搜了下题解,发现按照查询的右端点排序,然后线段树边插入,边查询就好了。

到第i个元素的时候,只保留i这个大小的数最后一次出现的位置,前面出现过的位置上的数置0。由于是按右端点排序,在到达第k条询问的右端点的时候,保证到了当前位置区间内所有重复的数只有一个。

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <map>

#include <set>

#include <bitset>

#include <queue>

#include <stack>

#include <string>

#include <iostream>

#include <cmath>

#include <climits>

typedef long long LL;

using namespace std;



#define lson l,mid,rt<<1

#define rson mid+1,r,rt<<1|1



const LL maxn = 33333;

LL sum[maxn << 2];

LL last[maxn];

LL n;

LL a[maxn];

LL b[maxn];

void build(LL l, LL r, LL rt)

{

	sum[rt] = 0;

	if (l == r) return;

	LL mid = (l + r) >> 1;

	build(lson); build(rson);

}



void up(LL rt)

{

	sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];

}



void update(LL pos, LL add, LL l, LL r, LL rt)

{

	if (l == r){

		sum[rt] = add; return;

	}

	LL mid = (l + r) >> 1;

	if (pos <= mid) update(pos, add, lson);

	else update(pos, add, rson);

	up(rt);

}



LL ask(LL L, LL R, LL l, LL r, LL rt)

{

	if (L <= l&&r <= R) return sum[rt];

	LL mid = (l + r) >> 1;

	LL ans = 0;

	if (L <= mid) ans += ask(L, R, lson);

	if (R>mid) ans += ask(L, R, rson);

	return ans;

}



void init()

{

	vector<LL> q1;

	for (LL i = 0; i < n; i++) q1.push_back(a[i]);

	sort(q1.begin(), q1.end());

	q1.erase(unique(q1.begin(), q1.end()), q1.end());

	for (LL i = 0; i < n; i++) b[i] = lower_bound(q1.begin(), q1.end(), a[i]) - q1.begin();

}

struct Node

{

	LL l; LL r; LL id;

}node[111111];



LL cmp(const Node &a1, const Node &b1)

{

	return a1.r < b1.r;

}

LL ans[111111];



int main()

{

	LL T;

	cin >> T;

	LL q;

	while (T--){

		cin >> n;

		build(0, n - 1, 1);

		for (LL i = 0; i < n; i++){

			scanf("%I64d", &a[i]);

		}

		init();

		cin >> q;

		for (LL i = 0; i < q; i++){

			scanf("%I64d%I64d", &node[i].l, &node[i].r); node[i].l -= 1; node[i].r -= 1;

			node[i].id = i;

		}

		memset(last, -1, sizeof(last));

		sort(node, node + q, cmp);

		LL pos = 0;

		for (LL i = 0; i < q; i++){

			while (pos <= node[i].r){

				LL t = last[b[pos]];

				if (t == -1){

					update(pos, a[pos], 0, n - 1, 1);

					last[b[pos]] = pos;

				}

				else{

					update(last[b[pos]], 0, 0, n - 1, 1);

					update(pos, a[pos], 0, n - 1, 1);

					last[b[pos]] = pos;

				}

				pos++;

			}

			ans[node[i].id] = ask(node[i].l, node[i].r, 0, n - 1, 1);

		}

		for (LL i = 0; i < q; i++){

			printf("%I64d\n", ans[i]);

		}

	}

	return 0;

}

Poj3188 

题意:把L个字母按顺序分成连续的B份,变成手机按键,然后给出字典,问这些字典用手机按键去按,有多少个单词不存在冲突。

暴力枚举划分方式,然后hash去判断冲突。在弄的时候因为用了map,超时了,调了好久。。写的很戳

#include <cstdio>

#include <cstring>

#include <algorithm>

#include <map>

#include <set>

#include <bitset>

#include <queue>

#include <stack>

#include <string>

#include <iostream>

#include <cmath>

#include <climits>

typedef long long LL;

using namespace std;



const int Hash = 128;

const int maxn = 1e6;



int askval(char *s)

{

	int k = 0;

	while (*s) k = (*s++) + (k << 6) + (k << 16) - k;

	return (k & 0x7fffffff);

}



int B, L, n;



struct HashMap

{

	int size; int head[Hash + 10]; int val[maxn + 10]; int next[maxn + 10]; char s[maxn][14];

	int cnt[maxn + 10];

	void init()

	{

		size = 0; memset(head, -1, sizeof(head));

	}

	int ask(char *s1)

	{

		int k = askval(s1);

		int t = (k%Hash + Hash) % Hash;

		for (int i = head[t]; i != -1; i = next[i]){

			if (val[i] == k){

				if (strcmp(s1, s[i]) == 0) return cnt[i];

			}

		}

		return 0;

	}

	void insert(char *s1)

	{

		int k = askval(s1);

		int t = (k%Hash + Hash) % Hash;

		for (int i = head[t]; i != -1; i = next[i]){

			if (val[i] == k) if (strcmp(s1, s[i]) == 0){

				cnt[i]++; return;

			}

		}

		val[size] = k; next[size] = head[t]; strcpy(s[size], s1); cnt[size] = 1;

		head[t] = size++;

	}



}T;



char str[1111][12];

int a[100];

int Max;

int p[100];

int m[30];

void gao(int pos, int sum)

{

	if (sum == B){

		T.init();

		memset(m, 0, sizeof(m));

		for (int i = 0; i<B - 1; i++){

			for (int j = a[i]; j<a[i + 1]; j++) m[j] = i;

		}

		for (int i = a[B - 1]; i<L; i++) m[i] = B - 1;

		int ans = 0;

		for (int i = 0; i<n; i++){

			char s1[14]; strcpy(s1, str[i]);

			int len = strlen(s1);

			for (int j = 0; j<len; j++) s1[j] = m[s1[j] - 'A'] + 'A';

			int t = T.ask(s1);

			if (!t) T.insert(s1), ans++;

			if (t == 1){

				ans--; T.insert(s1);

			}

		}

		if (ans>Max){

			Max = ans; for (int i = 0; i<B; i++) p[i] = a[i];

		}

		return;

	}

	if (sum == 0){

		a[sum] = 0; gao(0, sum + 1);

	}

	else

	for (int i = L - B + sum; i>pos; i--){

		a[sum] = i;

		gao(i, sum + 1);

	}

}





int main()

{

	while (scanf("%d%d", &B, &L) != EOF){

		scanf("%d", &n);

		a[0] = -1; p[0] = -1;

		for (int i = 0; i < n; i++){

			scanf("%s", str[i]);

		}

		Max = -1;

		gao(0, 0);

		printf("%d\n", Max);

		for (int i = 0; i<B - 1; i++){

			for (int j = p[i]; j<p[i + 1]; j++) printf("%c", j + 'A');

			printf("\n");

		}

		for (int i = p[B - 1]; i<L; i++) printf("%c", i + 'A');

		if (p[B - 1] <= L - 1) printf("\n");

	}

	return 0;

}

  

你可能感兴趣的:(hash)