- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 数据分析-13-时间序列异常值检测的类型及常见的检测方法
皮皮冰燃
数据分析数据分析
参考时间序列异常值的分类及检测参考异常值数据预警分析1时间序列异常的类型时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能
- 【大数据】孤立森林算法
大雨淅淅
大数据算法python大数据人工智能
目录一、孤立森林算法概述二、孤立森林算法优缺点和改进2.1孤立森林算法优点2.2孤立森林算法缺点2.3孤立森林算法改进三、孤立森林算法代码实现3.1孤立森林算法python实现3.2孤立森林算法JAVA实现3.3孤立森林算法C++实现四、孤立森林算法应用一、孤立森林算法概述孤立森林算法是一种用于异常检测的机器学习算法。它基于这样的直觉:异常点是数据中的少数派,它们在特征空间中的分布与正常数据点不同
- 基于STM32的工厂安全监测系统:采用FreeRTOS、MQTT协议、InfluxDB存储与Grafana可视化,实现实时数据监测与异常检测算法优化的综合解决方案(代码示例)
极客小张
stm32安全grafana算法物联网c++异常检测算法
一、项目概述项目目标与用途随着工业自动化的不断推进,工厂的安全问题成为了企业管理者关注的重点。工厂中的温度、湿度、气体浓度、烟雾、压力等环境参数直接影响着生产的安全性和产品的质量。本项目旨在设计并实现一个嵌入式工厂安全监测系统,实时监测工厂环境中的关键安全参数,通过无线通信模块将数据传输到云端进行存储和分析,从而实现对工厂环境的智能化监控和预警。项目解决的问题与价值实时监测:实时采集工厂内的温度、
- 电力行业电气领域相关数据集下载地址汇总输电线路变电站电网应用数据集汇总(全网最全)
FL1623863129
数据集目标检测
在电力行业电气领域,数据集扮演着至关重要的角色。这些数据集涵盖了从发电到用电的各个环节,包括输电线路图像、变电站监测、电力负荷预测等多样化内容。例如,输电线路图像数据集通过无人机或直升机拍摄,包含了杆塔、绝缘子、导线等详细图像,为目标检测、分类和异常检测提供了丰富的素材。此外,还有针对变电站烟火检测、导线破损检测等特定任务的数据集,这些数据集通过收集实际场景中的图像和视频,帮助研究人员训练更加精准
- 周报 | 24.8.12-24.8.18文章汇总
双木的木
深度学习拓展阅读深度学习人工智能transformer算法pythonstablediffusionllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|24.8.5-24.8.11文章汇总-CSDN博客OpenCV与AI深度学习|实战|使用YoloV8实例分割识别猪的姿态(含数据集)-CSDN博客极市平台|异常检测开源数据集汇总-CSDN博客程序员学长|快速学习一个算法,集成学习-CSDN博客Coggle数据科学|行业落地分享:大模型RAG汽车应用实践_rag中的意图识别-CSD
- 异常GPT:使用LVLMs检测工业异常
DUT_LYH
gpt人工智能算法
AnomalyGPT:利用LVLMs进行工业异常检测摘要本文介绍了一种名为AnomalyGPT的新型工业异常检测方法,该方法基于大型视觉语言模型(LVLMs)。AnomalyGPT能够检测并定位图像中的异常,无需手动设置阈值。此外,AnomalyGPT还可以提供与图像相关的详细信息,以交互方式与用户进行交流。本文详细阐述了AnomalyGPT的模型架构、解码器、提示学习器以及异常模拟方法,并在Vi
- 基于极限树特征递归消除和LightGBM的异常检测模型
宋罗世家技术屋
信息资源管理与发展专栏算法python
摘要入侵检测数据维数大、数据样本不均衡、数据集分散性大的问题严重影响分类性能,为了解决该问题,文章提出基于极限随机树的特征递归消除(ExtraTrees-RecursiveFeatureElimination,ET-RFE)和LightGBM(LGBM)的入侵检测方法。首先对网络数据进行独热编码重构,在数据级层面均衡少量样本的攻击类别;其次,使用基于ET-RFE对流量特征进行降维处理,寻找含有信息
- 探索LightGBM:监督式聚类与异常检测
Echo_Wish
Python笔记Python算法聚类数据挖掘机器学习
导言监督式聚类和异常检测是在监督学习框架下进行的一种特殊形式的数据分析技术。在Python中,LightGBM提供了一些功能来执行监督式聚类和异常检测任务。本教程将详细介绍如何使用LightGBM进行监督式聚类和异常检测,并提供相应的代码示例。监督式聚类监督式聚类是一种将聚类任务结合到监督学习框架中的技术。LightGBM提供了一种基于决策树的监督式聚类方法。以下是一个简单的示例:importli
- Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
deephub
llama深度学习时间序列基础模型
2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。在原论文《Lag-Llama:TowardsFoundationMo
- 基于UI交互意图理解的异常检测方法
美团测试
美团到店平台技术部/质量工程部与复旦大学周扬帆教授团队开展了科研合作,基于业务实际场景,自主研发了多模态UI交互意图识别模型以及配套的UI交互框架。本文从大前端质量保障领域的痛点出发,介绍了UI交互意图识别的方法设计与实现。基于UI交互意图编写的测试用例在实际业务中展现出了可以跨端、跨App的泛化能力,希望可以为从事相关工作的同学带来一些启发或帮助。1.背景近年来,随着美团多种业务线的扩充和迭代,
- Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
人工智能深度学习python
2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。在原论文《Lag-Llama:TowardsFoundationMo
- 异常检测-基于统计学的方法-学习笔记-2
Rank_Fan007
异常检测的学习笔记并非原创,而是搜索各位大佬的帖子整理而得。如有冒犯,请联系我。1.概述统计学⽅法对数据的正常性做出假定。它们假定正常的数据对象由⼀个统计模型产⽣,而不遵守该模型的数据是异常点。异常检测的统计学⽅法的⼀般思想是:学习⼀个拟合给定数据集的⽣成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。根据如何指定和学习模型,异常检测的统计学⽅法可以划分为两个主要类型:参数⽅法和⾮参数⽅
- Deep Learning for Anomaly Detection: A Review(翻译)
appron
入侵检测异常检测网络攻击检测
前言一、引言二、异常检测:问题的复杂性和挑战1.主要问题复杂性2.深度异常检测所面临的主要挑战三、用深度异常检测应对挑战1.预备工作2.深度异常检测方法的分类四.深度学习的特征提取1.预训练模型2.特定的特征提取模型五.学习常态的特征表征(特征提取器即分类器,即时连接同步训练的特征提取器和分类器)1.通用规范特征学习1.1自动编码器。(特征提取器即分类器)1.2生成对抗网络。(AnoGAN,f-A
- ICCV 2023 | 腾讯优图16篇论文入选!轻量级主干、异常检测和扩散模型等方向
Amusi(CVer)
点击下方卡片,关注“CVer”公众号AI/CV重磅干货,第一时间送达点击进入—>【计算机视觉和论文写作】交流群来源:腾讯优图实验室作为全球计算机领域顶级的学术会议之一,ICCV2023(InternationalConferenceonComputerVision)国际计算机视觉大会将于今年10月在法国巴黎举行。近日,ICCV公布了论文录用结果,本届会议共有8068篇投稿,接收率为26.8%。今年
- ICCV 2023 | 8篇论文看扩散模型diffusion用于图像检测任务:动作检测、目标检测、异常检测、deepfake检测...
机器学习与AI生成创作
目标检测人工智能计算机视觉
1、动作检测DiffTAD:TemporalActionDetectionwithProposalDenoisingDiffusion基于扩散方法提出一种新的时序动作检测(TAD)算法,简称DiffTAD。以随机时序proposals作为输入,可以在未修剪的长视频中准确生成动作proposals。从生成建模的视角,与先前的判别学习方法不同。首先将真实proposals从正向扩散到随机proposa
- 智能运维哪些算法?智能运维包含哪些
云呐AIOps
智能运维AIOps运维管理系统运维
在智能运维领域,详细介绍一些关键的算法,并阐述这些算法是如何被应用于智能运维系统中的。此外,关于智能运维中包含的主要组成部分或功能模块,以及它们各自的作用和重要性。如何应用再场景中应用在智能运维行业,一些关键算法包括:机器学习算法:如决策树、随机森林、svm算法等,从历史数据中学习方法和规律,预测未来的特点和故障。在智能操作和维护系统中,这些算法被应用于故障预测、异常检测、资源调度等方面,以帮助操
- NeurIPS 2023 时间序列相关论文总结
STLearner
大数据智慧城市pytorch数据挖掘论文阅读深度学习
祝大家中秋国庆双节快乐!NeurIPS2023将于11月28日到12月9日在美国路易斯安那州新奥尔良举行。根据官方公布的邮件显示,今年共有12343篇投稿,接受率为26.1%,官网显示一共有3564篇论文。本文总结了NeurIPS23时间序列(不含时空数据,已经另外总结)的相关论文。包括时间序列预测,分类,异常检测,因果发现,交通,医疗等领域时间序列应用和大模型在时间序列问题建模的探索等方向。1.
- WWW 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
STLearner
时空数据人工智能机器学习深度学习数据挖掘智慧城市论文阅读
WWW2024已经放榜,本次会议共提交了2008篇文章,researchtracks共录用约400多篇论文,录用率为20.2%。本次会议将于2024年5月13日-17日在新加坡举办。本文总结了WWW2024有关时间序列(TimeSeries)和时空数据(Spatial-Temporal)的相关文章,部分挂在了arXiv上。时间序列Topic:时序预测,异常检测,时域频域,大模型等时空数据Topic
- 梯度提升树系列6——GBDT在异常检测领域的应用
theskylife
数据挖掘机器学习数据挖掘GBDT分类python
目录写在开头1异常检测的基本概念1.1定义和目标1.2GBDT在异常检测中的适用性2信用卡欺诈检测案例分析2.1场景介绍2.2收集数据和特征工程2.3进行异常值识别2.4模型效果评估2.5模型优化3策略和技巧4面临的挑战和解决方案4.1数据不平衡4.2过拟合4.3模型解释性写在最后在如今数据驱动的时代,异常检测成为了保障系统安全的关键技术,尤其在金融安全、网络安全等领域中扮演着至关重要的角色。梯度
- 时间序列异常检测论文TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data
蛐蛐蛐
transformer深度学习人工智能
由于工作需要,想用一下这篇论文的方法,但感觉其代码还是有很多不清除的地方,简单总结一下。关于论文的内容介绍,可以参考:【VLDB】融合transformer和对抗学习的多变量时间序列异常检测算法TranAD论文和代码解读-知乎说得比较清楚了,我就不重复了。但是读代码的时候还是有很多不明白的地方。这里以Data文件夹下的SWaT数据集为例进行分析。首先,打开train.xlsx,可以看到就是两个me
- Python报No such file or directory: ‘science‘的解决方法
蛐蛐蛐
Python技巧论文点评python开发语言
接上一篇博文:时间序列异常检测论文TranAD:DeepTransformerNetworksforAnomalyDetectioninMultivariateTimeSeriesData-CSDN博客还是想看看这篇论文的可视化结果。但是当我重新运行原版代码的时候,会报错:FileNotFoundError:[Errno2]Nosuchfileordirectory:'science'Theabo
- Wazuh功能——异常和恶意软件检测
Threathunter
异常检测是指在系统中发现与预期行为不匹配的模式的行为。一旦恶意软件(例如rootkit)安装在系统上,它就会修改系统以隐藏自己,不让用户看到。尽管恶意软件使用多种技术来实现这一点,Wazuh却使用了一种广谱的方法来发现异常模式,表明可能存在入侵者。负责这项任务的主要组件是rootcheck,然而,Syscheck也扮演着重要的角色。一、怎样工作1、文件完整性监测恶意软件可以替换其主机系统上的文件、
- 【人工智能】神奇的Embedding:文本变向量,大语言模型智慧密码解析(10)
魔道不误砍柴功
AI大模型人工智能embedding语言模型
什么是嵌入?OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:Search搜索(结果按与查询字符串的相关性排序)Clustering聚类(文本字符串按相似性分组)Recommendations推荐(推荐具有相关文本字符串的条目)Anomalydetection异常检测(识别出相关性很小的异常值)Diversitymeasurement多样性测量(分析相似性分布)Classificatio
- Arxiv网络科学论文摘要15篇(2020-10-21)
ComplexLY
考虑拓扑的图池化网络;因果网络模体:识别A/B测试中的异构溢出效应;关系事件模型与逆强化学习之间的联系,用于表征群体互动序列;不能通过外表来判断用户:了解社交媒体研究中多模式处理中的危害;气候讨论中推文的传播;目标路网中断导致的级联故障;通过基于订阅的频道嵌入来理解YouTube社区;鲁棒的异步和独立于网络的合作学习;通过学习和预测行为进行早期异常检测;Heider与协同演化平衡:从离散到连续相变
- 基于LLM的数据漂移和异常检测
新缸中之脑
LLM
大型语言模型(LLM)的最新进展被证明是许多领域的颠覆性力量(请参阅:通用人工智能的火花:GPT-4的早期实验)。和许多人一样,我们非常感兴趣地关注这些发展,并探索LLM影响数据科学和机器学习领域的工作流程和常见实践的潜力。在我们之前的文章中,我们展示了LLM使用Kaggle竞赛中的表格数据提供预测的潜力。只需很少的努力(即数据清理和/或功能开发),我们基于LLM的模型就可以在几个竞赛参赛作品中获
- 京东数据分析岗面试题目整理
Data地平线
1,怎么做恶意刷单检验分类问题用机器学习方法建模解决,特征有:1)商家特征:商家历史销量、信用、产品类别、发货快递公司等2)用户行为特征:用户信用、下单量、转化率、下单路径、浏览店铺行为、支付账号3)环境特征(主要是避免机器刷单):地区、ip、手机型号等4)异常检测:ip地址经常变动、经常清空cookie信息、账号近期交易成功率上升等5)评论文本检测:刷单的评论文本可能套路较为一致,计算与已标注评
- 2-5 异常检测 Anomaly detection with robust deep autoencoders 笔记
Siberia_
一、基本信息 题目:Anomalydetectionwithrobustdeepautoencoders 期刊/会议:ACMSIGKDD 发表时间:2017年 引用次数:26二、论文总结2.1研究方向 提高自编码模型的抗噪声能力2.2写作动机 受鲁棒PCA的启发,将原始数据分成正常数据和噪声、异常数据两部分,然后进行交替训练。2.3创新之处 除了使用传统的L1正则化去约束噪声部分之外
- [Python] 什么是KMeans聚类算法以及scikit-learn中的KMeans使用案例
老狼IT工作室
python机器学习pythonscikit-learn
什么是无监督学习?无监督学习是机器学习中的一种方法,其主要目的是从无标签的数据集中发现隐藏的模式、结构或者规律。在无监督学习中,算法不依赖于任何先验的标签信息,而是根据数据本身的特征和规律进行学习和推断。无监督学习通常用于聚类、降维、异常检测等任务。在聚类中,算法会将相似的数据点归为一类;在降维中,算法会将高维数据映射到低维空间;在异常检测中,算法会发现与其他数据不同的离群点。无监督学习是与有监督
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的