2016中国大学生程序设计竞赛 - 网络选拔赛 1003 Magic boy Bi Luo with his excited tree hdu5834

Problem Description
Bi Luo is a magic boy, he also has a migic tree, the tree has  N nodes , in each node , there is a treasure, it's value is  V[i], and for each edge, there is a cost  C[i], which means every time you pass the edge  i , you need to pay  C[i].

You may attention that every  V[i] can be taken only once, but for some  C[i] , you may cost severial times.

Now, Bi Luo define  ans[i] as the most value can Bi Luo gets if Bi Luo starts at node  i.

Bi Luo is also an excited boy, now he wants to know every  ans[i], can you help him?
 

Input
First line is a positive integer  T(T104) , represents there are  T test cases.

Four each test:

The first line contain an integer  N (N105).

The next line contains  N integers  V[i], which means the treasure’s value of node  i(1V[i]104).

For the next  N1 lines, each contains three integers  u,v,c , which means node  u and node  v are connected by an edge, it's cost is  c(1c104).

You can assume that the sum of  N will not exceed  106.
 

Output
For the i-th test case , first output Case #i: in a single line , then output  N lines , for the i-th line , output  ans[i] in a single line.
 

Sample Input
 
   
1 5 4 1 7 7 7 1 2 6 1 3 1 2 4 8 3 5 2
 

Sample Output
 
   
Case #1: 15 10 14 9 15
 
这题没出是我的锅。。有个地方偷个懒少维护个东西结果被卡T了
f[i][0/1]表示这个点为根的情况不返回/返回的最大收益
然后先以1为根做一遍
然后遍历这棵树。手动转换根。每次转换只影响自己和父节点两个

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
struct line
{
	int s,t,x;
	int next;
}a[400001];
int head[200001];
int edge;
inline void add(int s,int t,int x)
{
	a[edge].next=head[s];
	head[s]=edge;
	a[edge].s=s;
	a[edge].t=t;
	a[edge].x=x;
}
int fa[200001],val[200001];
int sx[200001],ans[200001];
int f[200001][2];//0不返回1返回 
int fx[200001][2];
inline void dfs(int d)
{
	int i,sum=0;
	for(i=head[d];i!=0;i=a[i].next)
	{
		int t=a[i].t;
		if(fa[d]!=t)
		{
			fa[t]=d;
			dfs(t);
			if(2*a[i].xmaxx)
				{
					maxt=maxx;
					maxx=sum-f[t][1]+f[t][0]+a[i].x;
					maxi=t;
				}
				else if(sum-f[t][1]+f[t][0]+a[i].x>maxt)
					maxt=sum-f[t][1]+f[t][0]+a[i].x;
			}
			else
			{
				if(sum+f[t][0]-a[i].x>maxx)
				{
					maxt=maxx;
					maxx=sum+f[t][0]-a[i].x;
					maxi=t;
				}
				else if(sum+f[t][0]-a[i].x>maxt)
					maxt=sum+f[t][0]-a[i].x;
			}
		}
	}
	f[d][0]=maxx+val[d];
	f[d][1]=sum+val[d];
	fx[d][0]=maxi;
	fx[d][1]=maxt+val[d];
}
inline void trdp(int d,int x)
{
	int t0=f[fa[d]][0],t1=f[fa[d]][1],ts=sx[fa[d]];
	int tt0=f[d][0],tt1=f[d][1],tts=sx[d];
	if(2*xx*2)
			f[fa[d]][0]=f[fa[d]][0]-f[d][1]+x*2;
	}
	else
	{
		if(f[d][1]>x*2)
			f[fa[d]][0]=f[fa[d]][0]-f[d][1]+x*2;
	}
	
	f[fa[d]][1]=sum+val[fa[d]];
	
	if(2*xmaxx)
			{
				maxt=maxx;
				maxx=tt;
				maxi=t;
			}
				else if(tt>maxt)
					maxt=tt;
		}
		else
		{
			int tt=sum+f[t][0]-a[i].x;
			if(tt>maxx)
			{
				maxt=maxx;
				maxx=tt;
				maxi=t;
			}
			else if(tt>maxt)
				maxt=tt;
		}
	}
	f[d][0]=maxx+val[d];
	f[d][1]=sum+val[d];
	fx[d][0]=maxi;
	fx[d][1]=maxt+val[d];
	ans[d]=f[d][0];
	int dx=fa[d];
	fa[dx]=d;
	fa[d]=0; 
	for(i=head[d];i!=0;i=a[i].next)
	{
		int t=a[i].t;
		if(t!=dx)
			trdp(t,a[i].x);
	}
	f[d][0]=tt0;
	f[d][1]=tt1;
	f[dx][0]=t0;
	f[dx][1]=t1;
	fa[d]=dx;
	fa[dx]=0;
	sx[dx]=ts;
	sx[d]=tts;
}
int main()
{
//	freopen("1003.in","r",stdin);
//	freopen("1003.out","w",stdout);
	int T,k=0;
	T=read();
	while(T>0)
	{
		T--;
		k++;
		edge=0;
		int n,i,ss,tt,xx;
		n=read();
		for(i=1;i<=n;i++)
			val[i]=read();
		for(i=1;i<=n-1;i++)
		{
			ss=read();tt=read();xx=read();
			edge++;
			add(ss,tt,xx);
			edge++;
			add(tt,ss,xx);
		}
		dfs(1);
		ans[1]=f[1][0];
	//	printf("%d\n",f[1][0]);
		for(i=head[1];i!=0;i=a[i].next)
			trdp(a[i].t,a[i].x);
		printf("Case #%d:\n",k);
		for(i=1;i<=n;i++)
			printf("%d\n",ans[i]);
		for(i=1;i<=n;i++)
		{
			fa[i]=0;
			head[i]=0;
		}
	}
	return 0;
}


你可能感兴趣的:(DP,树形dp)