R-FCN+ResNet-50用自己的数据集训练模型(python版本)

说明:

本文假设你已经做好数据集,格式和VOC2007一致,并且Linux系统已经配置好caffe所需环境(博客里教程很多),下面是训练的一些修改。


py-R-FCN源码下载地址:

https://github.com/Orpine/py-R-FCN

也有Matlab版本:

https://github.com/daijifeng001/R-FCN

本文用到的是python版本。


本文主要参考https://github.com/Orpine/py-R-FCN。


准备工作:

(1)配置caffe环境(网上找教程)

(2)安装cythonpython-opencveasydict

pip install cython
pip install easydict
apt-get install python-opencv

然后,我们就可以开始配置R-FCN了。

1.下载py-R-FCN

git clone https://github.com/Orpine/py-R-FCN.git

下面称你的py-R-FCN路径为RFCN_ROOT.


2.下载caffe

注意,该caffe版本是微软版本
cd $RFCN_ROOT
git clone https://github.com/Microsoft/caffe.git
如果一切正常的话,python代码会自动添加环境变量 $RFCN_ROOT/caffe/python,否则,你需要自己添加环境变量。

3.Build Cython

cd $RFCN_ROOT/lib
make

4.Build caffe和pycaffe

cd $RFCN_ROOT/caffe
cp Makefile.config.example Makefile.config
然后修改Makefile.config。caffe必须支持python层,所以WITH_PYTHON_LAYER := 1是必须的。其他配置可参考: Makefile.config

接着:
cd $RFCN_ROOT/caffe
make -j8 && make pycaffe
如果没有出错,则:
R-FCN+ResNet-50用自己的数据集训练模型(python版本)_第1张图片

5.测试Demo

经过上面的工作,我们可以测试一下是否可以正常运行。
我们需要下载作者训练好的模型,地址:链接:http://pan.baidu.com/s/1kVGy8DL 密码:pwwg
然后将模型放在$RFCN_ROOT/data。看起来是这样的:
$RFCN_ROOT/data/rfcn_models/resnet50_rfcn_final.caffemodel
$RFCN_ROOT/data/rfcn_models/resnet101_rfcn_final.caffemodel
运行:
cd $RFCN_ROOT
./tools/demo_rfcn.py --net ResNet-50
R-FCN+ResNet-50用自己的数据集训练模型(python版本)_第2张图片


6.用我们的数据集训练

(1)拷贝数据集

假设我们已经做好数据集了,格式是和VOC2007一致,将你的数据集
拷贝到$RFCN_ROOT/data下。看起来是这样的:
$VOCdevkit0712/                           # development kit
$VOCdevkit/VOCcode/                   # VOC utility code
$VOCdevkit/VOC0712                    # image sets, annotations, etc.
# ... and several other directories ...
如果你的文件夹名字不是VOCdevkit0712和VOC0712,修改成0712就行了。
(作者是用VOC2007和VOC2012训练的,所以文件夹名字带0712。也可以修改代码,但是那样比较麻烦一些,修改文件夹比较简单)

(2)下载预训练模型
本文以ResNet-50为例,因此下载ResNet-50-model.caffemodel。下载地址:链接:http://pan.baidu.com/s/1slRHD0L 密码:r3ki
然后将caffemodel放在$RFCN_ROOT/data/imagenet_models  (data下没有该文件夹就新建一个)

(3)修改模型网络

打开$RFCN_ROOT/models/pascal_voc/ResNet-50/rfcn_end2end  (以end2end为例)

注意:下面的cls_num指的是你数据集的类别数+1(背景)。比如我有15类,+1类背景,cls_num=16.

<1>修改class-aware/train_ohem.prototxt
layer {
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 16" #cls_num
  }
}

layer {
  name: 'roi-data'
  type: 'Python'
  bottom: 'rpn_rois'
  bottom: 'gt_boxes'
  top: 'rois'
  top: 'labels'
  top: 'bbox_targets'
  top: 'bbox_inside_weights'
  top: 'bbox_outside_weights'
  python_param {
    module: 'rpn.proposal_target_layer'
    layer: 'ProposalTargetLayer'
    param_str: "'num_classes': 16" #cls_num
  }
}

layer {
    bottom: "conv_new_1"
    top: "rfcn_cls"
    name: "rfcn_cls"
    type: "Convolution"
    convolution_param {
        num_output: 784 #cls_num*(score_maps_size^2)
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "conv_new_1"
    top: "rfcn_bbox"
    name: "rfcn_bbox"
    type: "Convolution"
    convolution_param {
        num_output: 3136 #4*cls_num*(score_maps_size^2)
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "rfcn_cls"
    bottom: "rois"
    top: "psroipooled_cls_rois"
    name: "psroipooled_cls_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 16  #cls_num
        group_size: 7
    }
}

layer {
    bottom: "rfcn_bbox"
    bottom: "rois"
    top: "psroipooled_loc_rois"
    name: "psroipooled_loc_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 64 #4*cls_num
        group_size: 7
    }
}


<2>修改class-aware/test.prototxt

layer {
    bottom: "conv_new_1"
    top: "rfcn_cls"
    name: "rfcn_cls"
    type: "Convolution"
    convolution_param {
        num_output: 784 #cls_num*(score_maps_size^2)
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "conv_new_1"
    top: "rfcn_bbox"
    name: "rfcn_bbox"
    type: "Convolution"
    convolution_param {
        num_output: 3136 #4*cls_num*(score_maps_size^2)
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "rfcn_cls"
    bottom: "rois"
    top: "psroipooled_cls_rois"
    name: "psroipooled_cls_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 16  #cls_num
        group_size: 7
    }
}

layer {
    bottom: "rfcn_bbox"
    bottom: "rois"
    top: "psroipooled_loc_rois"
    name: "psroipooled_loc_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 64  #4*cls_num
        group_size: 7
    }
}
layer {
    name: "cls_prob_reshape"
    type: "Reshape"
    bottom: "cls_prob_pre"
    top: "cls_prob"
    reshape_param {
        shape {
            dim: -1
            dim: 16  #cls_num
        }
    }
}

layer {
    name: "bbox_pred_reshape"
    type: "Reshape"
    bottom: "bbox_pred_pre"
    top: "bbox_pred"
    reshape_param {
        shape {
            dim: -1
            dim: 64  #4*cls_num
        }
    }
}

<3>修改train_agnostic.prototxt

layer {
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 16"  #cls_num
  }
}
layer {
    bottom: "conv_new_1"
    top: "rfcn_cls"
    name: "rfcn_cls"
    type: "Convolution"
    convolution_param {
        num_output: 784 #cls_num*(score_maps_size^2)   ###
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "rfcn_cls"
    bottom: "rois"
    top: "psroipooled_cls_rois"
    name: "psroipooled_cls_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 16 #cls_num   ###
        group_size: 7
    }
}

<4>修改train_agnostic_ohem.prototxt

layer {
  name: 'input-data'
  type: 'Python'
  top: 'data'
  top: 'im_info'
  top: 'gt_boxes'
  python_param {
    module: 'roi_data_layer.layer'
    layer: 'RoIDataLayer'
    param_str: "'num_classes': 16" #cls_num ###
  }
}

layer {
    bottom: "conv_new_1"
    top: "rfcn_cls"
    name: "rfcn_cls"
    type: "Convolution"
    convolution_param {
        num_output: 784 #cls_num*(score_maps_size^2)   ###
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "rfcn_cls"
    bottom: "rois"
    top: "psroipooled_cls_rois"
    name: "psroipooled_cls_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 16 #cls_num   ###
        group_size: 7
    }
}

<5>修改test_agnostic.prototxt

layer {
    bottom: "conv_new_1"
    top: "rfcn_cls"
    name: "rfcn_cls"
    type: "Convolution"
    convolution_param {
        num_output: 784 #cls_num*(score_maps_size^2) ###
        kernel_size: 1
        pad: 0
        weight_filler {
            type: "gaussian"
            std: 0.01
        }
        bias_filler {
            type: "constant"
            value: 0
        }
    }
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
}

layer {
    bottom: "rfcn_cls"
    bottom: "rois"
    top: "psroipooled_cls_rois"
    name: "psroipooled_cls_rois"
    type: "PSROIPooling"
    psroi_pooling_param {
        spatial_scale: 0.0625
        output_dim: 16 #cls_num   ###
        group_size: 7
    }
}

layer {
    name: "cls_prob_reshape"
    type: "Reshape"
    bottom: "cls_prob_pre"
    top: "cls_prob"
    reshape_param {
        shape {
            dim: -1
            dim: 16 #cls_num   ###
        }
    }
}

(4)修改代码

<1>$RFCN/lib/datasets/pascal_voc.py

class pascal_voc(imdb):
    def __init__(self, image_set, year, devkit_path=None):
        imdb.__init__(self, 'voc_' + year + '_' + image_set)
        self._year = year
        self._image_set = image_set
        self._devkit_path = self._get_default_path() if devkit_path is None \
                            else devkit_path
        self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
        self._classes = ('__background__', # always index 0
                         '你的标签1','你的标签2',你的标签3','你的标签4'
                      )
改成你的数据集标签。

<2>$RFCN_ROOT/lib/datasets/imdb.py

主要是assert (boxes[:, 2] >= boxes[:, 0]).all()可能出现AssertionError,具体解决办法参考:
http://blog.csdn.net/xzzppp/article/details/52036794


PS:
上面将有无ohem的prototxt都改了,但是这里训练用的是ohem。
另外,默认的迭代次数很大,可以修改$RFCN\experiments\scripts\rfcn_end2end_ohem.sh:
case $DATASET in
  pascal_voc)
    TRAIN_IMDB="voc_0712_trainval"
    TEST_IMDB="voc_0712_test"
    PT_DIR="pascal_voc"
    ITERS=110000

修改ITERS为你想要的迭代次数即可。


(5)开始训练

cd $RFCN_ROOT
./experiments/scripts/rfcn_end2end_ohem.sh 0 ResNet-50 pascal_voc

正常的话,就开始迭代了:

R-FCN+ResNet-50用自己的数据集训练模型(python版本)_第3张图片

$ RFCN_ROOT/experiments/scripts里还有一些其他的训练方法,也可以测试一下(经过上面的修改,无ohem的end2end训练也改好了,其他训练方法修改的过程差不多)。

(6)结果

将训练得到的模型($RFCN_ROOT/output/rfcn_end2end_ohem/voc_0712_trainval里最后的caffemodel)拷贝到$RFCN_ROOT/data/rfcn_models下,然后打开$RFCN_ROOT/tools/demo_rfcn.py,将CLASSES修改成你的标签,NETS修改成你的model,im_names修改成你的测试图片(放在data/demo下),最后:
cd $RFCN_ROOT
./tools/demo_rfcn.py --net ResNet-50
R-FCN+ResNet-50用自己的数据集训练模型(python版本)_第4张图片

我将显示的标签改为了中文,修改方法参考: http://blog.csdn.net/sinat_30071459/article/details/51694037

你可能感兴趣的:(R-FCN,目标检测,python)